Impact Avoidance and Minimization Techniques

Environmental Summit
DEEP Headquarters
November 20, 2018

Michael R. Lashua, E.I.T.
Transportation Engineer II
Division of Highway Design
Department of Transportation
Design Manuals and Guidelines

- Highway Design
- Drainage
- Bridge Design
- Bridge Safety
- Geotechnical
- Landscape
- Traffic
- Facilities & Transit
- Rights of Way
- Environmental Planning
- Utilities
- Maintenance
Project Development

• Systematic Decision Making
 1. Define the Problem
 • Traffic conditions and performance
 • Infrastructure conditions
 • Plans/Requirements
 2. Identify and Evaluate Alternatives
 • Evaluation:
 • Effectiveness
 • Impacts
 • Cost
 • Ideal alternatives are rare
 • Tradeoffs
 • Make a “well informed, well considered” decision
Project Development (cont’d.)

- Systematic Decision Making
 3. Select an Alternative
 - Present selected alternative to management
 - Design Approval → Funding
 4. Refine Selected Alternative
 - Refinement of design
 - Coordination with utility companies, railroad, property owners
 - Permit preparation
 - Contract development
Avoidance and Minimization Techniques

- Realign or relocate the corridor
 - Cross wetlands/watercourses at narrowest section
- Follow contours of existing land
- Narrow the corridor
- Change design type
- Span as much of a wetland as possible
- Use existing bridge abutments
- Use pervious materials
- Best Management Practices
Avoidance and Minimization Techniques
Avoidance and Minimization Techniques

- **Roadway Side Slopes**
 - 6H:1V slopes preferred for safety, maintenance, and constructability
 - Traversable and recoverable
 - Soils are stable
 - Easily maintained
 - 3H:1V – 4H:1V slopes are acceptable
 - Traversable but not recoverable
 - Typically installed when fill heights are greater than 10’
 - 2H:1V slopes are acceptable when needed
 - Not traversable
 - Guiderail is often required to protect errant vehicles
 - Guiderail introduces a roadside hazard
 - Erosion control matting required on slope
Avoidance and Minimization Techniques

- Side slopes steeper than 2H:1V require special treatment
 - Crushed stone surface protection up to 1.5H:1V slope
 - Retaining wall
 - Reinforced soil slope
Avoidance Techniques

• Project 35-188 – Darien, CT – Speed Change Lanes Interstate 95 at Interchanges 11 to 12 and 13

• Technique Implemented: Noise Barrier Wall with Earth Retaining Panels
Project 35-188 – Darien, CT
Speed Change Lanes Interstate 95 at Interchanges 11 to 12 and 13

Highway

Wetland
Avoidance Techniques

- Project 42-292 – East Hartford, CT – Realignment of Route 44
- Technique Implemented: Gabion Basket Outlet Structure
Project 42-292 – East Hartford, CT
Realignment of Route 44
Project 42-292 – East Hartford, CT
Realignment of Route 44
Avoidance Techniques

- Project 12-96 – Bolton, CT
 Construction of Charter Oak Greenway Shared Use Path

- Technique Implemented: Reinforced Soil Slope
Project 12-96 – Bolton, CT
Construction of Charter Oak Greenway
Project 12-96 – Bolton, CT
Construction of Charter Oak Greenway
Project 12-96 – Bolton, CT
Construction of Charter Oak Greenway
Project 12-96 – Bolton, CT
Construction of Charter Oak Greenway

Frog Eggs
Reinforced Soil Slope

- Alternatives
Reinforced Soil Slope

• Alternatives
 • 1:1 Reinforced Soil Slope – zero wetland impacts
 • 6:1 Slope – completely filled the wetland area
 • 2:1 Slope – partially covered the wetland area
 • Concrete retaining wall – wetland area impacted during construction
RSS Photos

During Construction - 8/4/17

TEMPORARY SHEET PILING
RSS Photos

During Construction - 8/9/17

Post Construction - 8/10/18
Summary

• We analyze alternatives for many aspects of the roadway design
• We work with many different units, agencies and municipalities
• There is no “one size fits all” design
• Each design unit wants what’s best for their design
 • Comes with tradeoffs

Thank you!