The State of Connecticut
Department of Environmental Protection

Proposed
State Implementation Plan Revision
Establishment of Interim Progress
for the
Fine Particle National Ambient Air Quality Standard

Technical Support Document
Early PM$_{2.5}$ Transportation Conformity
Emission Budgets
for the Connecticut Portion of the
New York-New Jersey-Long Island-Connecticut
PM$_{2.5}$ Nonattainment Area

February 7, 2007
Table of Contents

i. Definitions and Abbreviations ...(i)
ii. Executive Summary ... (ii)
I. BACKGROUND .. 1
II. METHODOLOGY ..4
III. EMISSION ESTIMATES AND 2009 CONFORMITY BUDGETS .. 6

ATTACHMENT A: Growth Factor Selection Table
ATTACHMENT B: Modeling Inputs Table
ATTACHMENT C: Weight of Evidence
i. Definitions and Abbreviations

“CT DEP” – The State of Connecticut Department of Environmental Protection.

“CT DOL” – The State of Connecticut Department of Labor.

“ConnDOT” – The State of Connecticut Department of Transportation.

“EPA” – The United States Environmental Protection Agency.

“FHWA” – The United States Department of Transportation Federal Highway Administration.

“MANE-VU” – Mid-Atlantic/Northeast Visibility Union.

“MARAMA” – Mid-Atlantic Regional Air Management Association.

“NAAQS” – National Ambient Air Quality Standards.

“NEI” – EPA’s National Emissions Inventory.

“NOx” – Oxides of Nitrogen.

“PM2.5” – Fine Particulate Matter or particles equal to or less than 2.5 micrometers in diameter.

“SCC” – Standard Classification Code.

“SIP” – State Implementation Plan.

“VMT” – Vehicle Miles Traveled.
Executive Summary

This technical support document (TSD) provides the basis for establishing early PM$_{2.5}$ transportation conformity budgets for the Connecticut portion of the New York-Northern New Jersey-Long Island, NY-NJ-CT PM$_{2.5}$ Nonattainment Area.

Connecticut’s Fairfield and New Haven Counties were judged by the United States Environmental Protection Agency (EPA) as contributing to measured violations of the annual PM$_{2.5}$ National Ambient Air Quality Standards (NAAQS) in New York City, thus were included in the above mentioned Nonattainment Area. However, there were no monitored violations to EPA’s 1997 annual PM$_{2.5}$ standards in Fairfield and New Haven counties in 2002, and any reduction in the overall inventory, for the two county area, below 2002 levels should help ensure that this level of air quality is maintained or improved in the future.

EPA established a PM$_{2.5}$ transportation conformity rule (69 FR 40028; July 1, 2004) indicating that states with PM$_{2.5}$ Nonattainment Areas can elect to submit a State Implementation Plan (SIP) revision containing early motor vehicle emission budgets that address the NAAQS in advance of a complete SIP attainment demonstration. Early budget submittals do not need to demonstrate attainment, but must achieve some progress towards attainment, consistent with adopted control measures and projected emissions. Progress is demonstrated if projected emissions in the 2009 attainment year are less than emissions in the 2002 base year.

EPA finalized PM$_{2.5}$ precursor requirements for transportation conformity in a May 6, 2005, final rule (70 FR 24280). The final rule also identified NO$_x$, VOCs, SO$_x$, and NH$_3$ as potential transportation-related PM$_{2.5}$ precursors; however, the only precursor found to be significant at this time for onroad mobile sources is NO$_x$.

This TSD demonstrates a very large percent reduction for onroad emissions in both direct PM$_{2.5}$ and NO$_x$ (31% and 46%, respectively). Also, this document demonstrates a decrease in overall PM$_{2.5}$ and NO$_x$ emissions by 2009. By 2009 emissions of direct PM$_{2.5}$ will be reduced by 168 tons or 2.5%, and NO$_x$ emissions will be reduced by 16,766 tons or 27% compared to 2002 base year levels.

The annual reductions of 2.5% for direct PM$_{2.5}$ emissions and of 27% for NO$_x$ emissions are demonstrated as the basis for establishing the early budgets. The early budget established for annual direct PM$_{2.5}$ emissions is 360 tons per year and for annual NO$_x$ emissions is 18,279 tons per year.

Summary of Results

Table 1 compares calculated 2002 and 2009 direct PM$_{2.5}$ inventories by source type for the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area. Although direct PM$_{2.5}$ emissions from area and point sources are projected to increase by two and eight percent, respectively, emissions from nonroad and onroad sources are projected to decrease by 13 and 31 percent, respectively. Overall this represents a 2.5% reduction in direct PM$_{2.5}$ emissions.
TABLE 1
DIRECT ANNUAL PM$_{2.5}$ EMISSIONS (tons/year)

<table>
<thead>
<tr>
<th>AREA</th>
<th>NONROAD</th>
<th>POINT</th>
<th>ONROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairfield</td>
<td>2,349</td>
<td>2,388</td>
<td>526</td>
</tr>
<tr>
<td>New Haven</td>
<td>2,427</td>
<td>2,476</td>
<td>448</td>
</tr>
<tr>
<td>Total for CT portion of NY-NJ-CT NAA</td>
<td>4,776</td>
<td>4,864</td>
<td>+88 (+2%)</td>
</tr>
</tbody>
</table>

Overall Comparison of Direct PM$_{2.5}$ Emissions for the CT Portion of the NY/NJ/CT PM$_{2.5}$ Nonattainment Area
2002: 6,663 tpy 2009: 6,495 tpy Difference: -168 tpy (-2.5%)

Table 2 compares calculated 2002 and 2009 annual NO$_x$ inventories by source type for the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area. Although NO$_x$ emissions from area and point sources are projected to increase by four and seven percent, respectively, emissions from nonroad and onroad sources are projected to decrease by 12 and 46 percent, respectively. Overall this represents a 27% reduction in annual NO$_x$ emissions.

TABLE 2
ANNUAL NO$_x$ EMISSIONS (tons/year)

<table>
<thead>
<tr>
<th>AREA</th>
<th>NONROAD</th>
<th>POINT</th>
<th>ONROAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNTY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairfield</td>
<td>3,134</td>
<td>3,269</td>
<td>7,150</td>
</tr>
<tr>
<td>New Haven</td>
<td>2,937</td>
<td>3,061</td>
<td>7,935</td>
</tr>
<tr>
<td>Total for CT portion of NY-NJ-CT NAA</td>
<td>6,071</td>
<td>6,330</td>
<td>+259 (+4%)</td>
</tr>
</tbody>
</table>

Overall Comparison of NOx Emissions for the CT Portion of the NY/NJ/CT PM$_{2.5}$ Nonattainment Area
2002: 61,199 tpy 2009: 44,433 tpy Difference: -16,766 tpy (-27%)

The early direct PM$_{2.5}$ and annual NO$_x$ motor vehicle emissions budgets being established are the on-road portion of the 2009 projections illustrated in Table 3; that is, 360 tons per
year for direct PM$_{2.5}$ and 18,279 tons per year for NO$_x$. The State of Connecticut Department of Transportation (ConnDOT), and Metropolitan Planning Organizations within the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area, shall use these budgets for future transportation conformity determinations once EPA finds them adequate or approves them for transportation conformity purposes.

TABLE 3

<table>
<thead>
<tr>
<th>2009 Transportation Conformity Emission Budgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT portion of the NY-NJ-Long Island-CT PM$_{2.5}$ Nonattainment Area</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Documentation of methodologies and a more complete summary of projections and calculations are provided in this TSD.

It should be noted that if the fraction of road dust and residential wood-burning emission estimates were decreased, to be consistent with observed monitoring data and wood-burning control analyses, the net result in overall direct PM$_{2.5}$ emission reductions between 2002 and 2009 would be much greater than the 2.5% demonstrated in this TSD.
I. BACKGROUND

Fine particulate matter is a mixture of microscopic solids and liquid droplets suspended in air, where the size of the particles is equal to or less than 2.5 micrometers, which is about one-thirtieth the diameter of a human hair. Fine particles can be emitted directly, such as smoke from a fire or as a component of motor vehicle exhaust, or be formed indirectly in the air from power plant, industrial and mobile source emissions of gases such as sulfur dioxide (SO₂) and NOₓ.

The health effects associated with exposure to fine particles are serious. Scientific studies have shown significant associations between elevated fine particle levels and premature death. Effects associated with PM₂.₅ exposure include aggravation of respiratory and cardiovascular disease, lung disease, decreased lung function, asthma episodes, and certain cardiovascular problems such as heart attacks and cardiac arrhythmia. While fine particles are unhealthy for anyone to breathe, people with heart or lung disease, asthmatics, older adults, and children are especially at risk.

In 1997, EPA promulgated National Ambient Air Quality Standards (NAAQS) for PM₂.₅. After prolonged litigation and deployment of a monitoring network, EPA finalized air quality designations for PM₂.₅ in April 2005. Those areas not meeting the PM₂.₅ NAAQS were designated as PM₂.₅ Nonattainment Areas. Connecticut’s Fairfield and New Haven Counties, judged by EPA as contributing to measured violations of the 1997 annual PM₂.₅ NAAQS in New York City, were included in a Nonattainment Area that also includes the northern New Jersey and New York counties of the New York City metropolitan area, known as the NY-NJ-CT PM₂.₅ Nonattainment Area. See Figure 1 for a map of this area.

The Clean Air Act Amendments of 1990 require states to submit State Implementation Plans (SIPs) to EPA within three years after designations to demonstrate how they will improve air quality and attain the standard. Nonattainment Areas are also subject to a federal rule known as “transportation conformity,” which requires local and state transportation and air quality officials to coordinate planning efforts to ensure that transportation projects, such as road construction, do not hinder an area's ability to reach its clean air goals. Transportation conformity requirements become effective one year after an area is designated as nonattainment.

During the period after conformity requirements have been triggered, but final transportation conformity budgets have not yet been established as part of the attainment SIP process, interim emission tests must be passed to show conformity. Alternative interim tests include:

1) Demonstrating that planned build scenarios for key years of transportation plans do not result in increased emissions when compared to the corresponding no-build scenario for each year;
2) Comparing area wide on-road emission estimates for key years in transportation plans to the 2002 base year emission levels to ensure transportation plans do not increase emissions; or
3) Establishing state and/or local “early” conformity budgets at a level consistent with progress toward attainment and demonstrating that transportation plans do not exceed those budgets.

In April 2006, affected transportation and air quality agencies in the NY-NJ-CT PM$_{2.5}$ Nonattainment Area met the initial one year deadline for demonstrating conformity through a complex multi-state interagency consultation process that showed future year transportation-related emissions throughout the multi-state Nonattainment Area would not exceed base year emission levels from 2002 using the second optional test above. The State of New Jersey subsequently proposed local early conformity budgets that were approved by EPA on July 10, 2006 for use in that state’s future conformity determinations until final budgets are in place through the PM$_{2.5}$ attainment SIP process. With early budgets now in place for its portion of the Nonattainment Area, New Jersey is no longer obligated to take part in the multi-state consultation process.

As described in this TSD, the Connecticut Department of Environmental Protection (CT DEP) has also decided to pursue adoption of early PM$_{2.5}$ conformity budgets for the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area, also referred to as the CT portion of the NY-NJ-CT NAA. The early budgets will not only simplify the administrative process for demonstrating conformity, but also will ensure interim progress will be made toward achieving the 1997 annual PM$_{2.5}$ NAAQS by limiting transportation plans to emission levels more restrictive than allowed by the current 2002 baseline year interim emissions test.
Figure 1: The New York-New Jersey-Connecticut PM$_{2.5}$ Nonattainment Area (in cross-hatch)
II. METHODOLOGY

EPA’s PM$_{2.5}$ transportation conformity rule (69 FR 40028; July 1, 2004) indicates that states with PM$_{2.5}$ Nonattainment Areas can elect to submit a SIP revision containing early motor vehicle emission budgets that address the new NAAQS in advance of a complete SIP attainment demonstration. Early budget submittals do not need to demonstrate attainment, but must achieve some progress towards attainment, consistent with adopted control measures and projected emissions. Specifically, if total projected emissions from all source categories in the required attainment year of 2009 are shown to be less than in the baseline year of 2002, then the on-road portion of the projected attainment year inventory can be used as the early transportation conformity budget.

In addition to direct PM$_{2.5}$ emissions, EPA’s May 6, 2005 conformity rule amendment (70 FR 24282) requires that NO$_x$ emissions be considered for PM$_{2.5}$ conformity, unless the state air agency and EPA administrator make a finding that NO$_x$ is not a significant PM$_{2.5}$ contributor. Conversely, VOC, SO$_x$ and ammonia are only to be considered for PM$_{2.5}$ conformity analyses if the state air agency or EPA administrator finds that on-road emissions of these precursors significantly contribute to PM$_{2.5}$ levels. Neither CT DEP nor EPA have made such findings at this point; therefore, NO$_x$ is the only PM$_{2.5}$ precursor considered in the development of early budgets.

This section documents the development of PM$_{2.5}$ and NO$_x$ emission estimates for the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area. Annual PM$_{2.5}$ and NO$_x$ point and area source emission estimates for 2002 were obtained from the 2002 Mid-Atlantic/Northeast Visibility Union (MANE-VU) Emissions Inventory (version 3). Projected point and area source emissions for 2009 were developed by applying growth factors to the 2002 emission estimates. For non-road and on-road sources, 2002 and 2009 emission estimates were developed using EPA’s NONROAD2005 and MOBILE6.2 models, respectively. Details on how 2009 emission projections were developed are provided below. Growth factors and local modeling inputs used in the EPA models are attached as Attachment A and Attachment B, respectively.

Area and Point Sources

Forecasted employment data from the Connecticut Department of Labor (CT DOL) were used to develop growth projections for the period from 2002 to 2009 for all area and point source categories, except as noted below.

- United States Census Bureau statewide population1 projections for 2009 were used to determine growth for area source residential categories, as well as for paved and unpaved road dust emissions.
- Growth factors for all fuel combustion area and point source categories were derived from the United States Department of Energy (US DOE), Energy Information Administration’s (EIA’s) Annual Energy Outlook 2005 report2. The

1 http://www.census.gov/popest/datasets.html
growth factors were determined using 2009 projected energy consumption data for the New England region, as compared to data for the 2002 base year.

- Growth factors for structural fires and forest wildfires were computed using information from the National Fire Safety Association’s “Fire Loss in the United States During 2002” and “Fire Loss in the United States During 2004” reports. The number of fires in the northeast region per thousand population are fairly close to the national numbers. However, it was recognized that wildfire activity in the western/southwestern part of the country may increase the growth factor derived from projected values. Using growth factors derived from national data extrapolated for 2009 is not a solid indicator of fire activity in Connecticut. However, fire activity growth factors were derived from the referenced National Fire Safety Association’s reports because these growth factors have very little effect on overall emissions inventory totals.

Using a conservative approach, for the purpose of this analysis, CT DEP assumed that no additional emission controls would be applied to area and point sources in the period between 2002 and 2009. This approach is conservative because it does not include PM$_{2.5}$ or PM$_{2.5}$ precursor reductions expected between 2002 and 2009 from recent state regulations which limit SO$_2$ (i.e., RCSA Section 22a-174-19a) and NO$_x$ (i.e., RCSA Section 22a-174-22) or federal requirements (i.e., CAIR ozone season NO$_x$ program).

Non-Road Sources
Non-road emissions in 2002 and 2009 were developed, for all categories except aircraft, locomotive and commercial marine vessels, using the default growth and control assumptions built into EPA’s NONROAD2005 model, with appropriate local inputs for temperatures and fuel composition. The 2002 MANE-VU Emissions Inventory was used as the basis for aircraft, locomotive and commercial marine vessels. Growth factors for aircraft activity were calculated from aircraft operational count data at Bradley International Airport. Airport activity was extrapolated for 2009, assuming the same growth witnessed in airport activity of years prior to the events of September 11, 2001. Growth factors for marine activity were obtained from CT DOL employment data for water transportation. Growth factors for locomotive activity were obtained from locomotive fuel sales data from EIA.

On-Road Sources
On-road motor vehicle emission estimates, for 2002 and 2009, were compiled by applying MOBILE6.2 modeled emission factors to the State of Connecticut Department of Transportation’s (ConnDOT’s) Travel Demand Model for those years. This approach, including data and assumptions, is similar to that employed in ConnDOT’s most recent transportation conformity analysis. The interagency consultation process was used to

6 Connecticut Department of Transportation. PM2.5 Air Quality Conformity Determination of the 2004 Regional Transportation Plans and the FY 2007-2011 Transportation Improvement Programs for the Connecticut portion of the NY-NJ-CT PM2.5 Nonattainment Area, June 2006.
develop the proper procedures and methodologies for estimating annual PM$_{2.5}$ and NO$_x$ emissions. CT DEP provided some of the MOBILE6.2 model inputs, such as the motor vehicle inspection and maintenance program input file and vehicle age distributions, while ConnDOT used up-to-date vehicle miles traveled (VMT) data to produce the appropriate VMT distribution files. MOBILE6.2 output emission factors and VMT data were used in the post-processing efforts to develop emission projections.

Similar to transportation budgets established previously for ozone precursors, a modeling uncertainty factor was added to the on-road emission projections and included in the resulting budgets for 2009 to avoid unnecessary complications in future conformity determinations due to minor changes to EPA or the United States Department of Transportation Federal Highway Administration (FHWA) modeling procedures. The modeling uncertainty factor used was 2%, which is a reduction from the previously used uncertainty factor of 3%. The 3% value has historically been used by Connecticut for planning purposes.

III. EMISSION ESTIMATES AND 2009 CONFORMITY BUDGETS

Table 1 compares 2002 PM$_{2.5}$ emission estimates to 2009 PM$_{2.5}$ emission projections. Annual direct PM$_{2.5}$ emissions from area and point sources are projected to increase by 2% and 8% percent, respectively. However, emissions from nonroad and onroad sources are projected to decrease by 13% and 31%, respectively. Overall this represents a 2.5%, or 168 tons per year, reduction in direct PM$_{2.5}$ emissions between 2002 and 2009.

CT DEP considers that the estimated direct PM$_{2.5}$ emission reduction of 2.5% is understated due to likely overestimations of PM$_{2.5}$ emissions resulting from two area source categories, namely re-entrained road dust and residential wood-burning activities. This determination for re-entrained road dust is based on examination of local speciated PM$_{2.5}$ monitoring data, as documented in Attachment C. Attachment C also contains material indicative of overestimations in residential wood-burning activity.

If the fraction of road dust and residential wood-burning emission estimates were decreased, to be consistent with observed monitoring data and wood-burning control analyses, the nonroad and onroad sectors would become a larger proportion of total PM$_{2.5}$ emissions. Therefore, the net result in overall direct PM$_{2.5}$ emission reductions between 2002 and 2009 would be much greater than the 2.5% reflected in this TSD.
Table 1 compares direct annual PM_{2.5} emissions for the CT portion of the NY/NJ/CT PM_{2.5} Nonattainment Area between 2002 and 2009.

TABLE 1
DIRECT ANNUAL PM_{2.5} EMISSIONS (tons/year)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairfield</td>
<td>2,349</td>
<td>2,388</td>
<td></td>
<td>526</td>
<td>454</td>
<td></td>
<td>190</td>
<td>202</td>
<td></td>
<td>269</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>New Haven</td>
<td>2,427</td>
<td>2,476</td>
<td></td>
<td>448</td>
<td>395</td>
<td></td>
<td>202</td>
<td>220</td>
<td></td>
<td>252</td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>Total for CT portion of NY-NJ-CT NAA</td>
<td>4,776</td>
<td>4,864</td>
<td>+88 (+2%)</td>
<td>974</td>
<td>849</td>
<td>-125 (-13%)</td>
<td>392</td>
<td>422</td>
<td>+30 (+8%)</td>
<td>521</td>
<td>360</td>
<td>-161 (-31%)</td>
</tr>
</tbody>
</table>

Overall Comparison of Direct PM2.5 Emissions for the CT Portion of the NY/NJ/CT PM2.5 Nonattainment Area

2002: 6,663 tpy
2009: 6,495 tpy
Difference: -168 tpy (-2.5%)

Table 2 compares 2002 NO_x emission estimates to 2009 NO_x emission projections. Annual NO_x emissions from area and point sources are projected to increase by 4% and 7% percent, respectively. However, emissions from nonroad and onroad sources are projected to decrease by 12% and 46%, respectively. Overall this represents a 27%, or 16,766 tons per year, reduction in NO_x emissions between 2002 and 2009.

TABLE 2
ANNUAL NO_x EMISSIONS (tons/year)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fairfield</td>
<td>3,134</td>
<td>3,269</td>
<td></td>
<td>7,150</td>
<td>6,104</td>
<td></td>
<td>3,892</td>
<td>4,183</td>
<td></td>
<td>17,411</td>
<td>9,314</td>
<td></td>
</tr>
<tr>
<td>New Haven</td>
<td>2,937</td>
<td>3,061</td>
<td></td>
<td>7,935</td>
<td>7,108</td>
<td></td>
<td>2,305</td>
<td>2,429</td>
<td></td>
<td>16,435</td>
<td>8,965</td>
<td></td>
</tr>
<tr>
<td>Total for CT portion of NY-NJ-CT NAA</td>
<td>6,071</td>
<td>6,330</td>
<td>+259 (+4%)</td>
<td>15,085</td>
<td>13,212</td>
<td>-1,873 (-12%)</td>
<td>6,197</td>
<td>6,612</td>
<td>+415 (+7%)</td>
<td>33,846</td>
<td>18,279</td>
<td>-15,567 (-46%)</td>
</tr>
</tbody>
</table>

Overall Comparison of NOx Emissions for the CT Portion of the NY/NJ/CT PM2.5 Nonattainment Area

2002: 61,199 tpy
2009: 44,433 tpy
Difference: -16,766 tpy (-27%)
The overall projected reductions in annual direct PM$_{2.5}$ and NO$_x$ emissions demonstrate that adopted control programs will ensure progress between 2002 and 2009 toward attaining the PM$_{2.5}$ NAAQS, thus meeting EPA’s criteria for establishing early PM$_{2.5}$ and NO$_x$ transportation conformity budgets. The 2009 annual budgets for Connecticut’s portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area, as summarized in Table 3, are 360 tons per year of direct PM$_{2.5}$ and 18,279 tons per year of NO$_x$. These values represent the onroad portion of the 2009 emissions projections. ConnDOT and affected Metropolitan Planning Organizations must use these transportation conformity budgets for future transportation conformity determinations once EPA finds them adequate or approves them for transportation conformity purposes.

TABLE 3

<table>
<thead>
<tr>
<th>2009 Transportation Conformity Emission Budgets</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT portion of the NY-NJ-Long Island-CT PM$_{2.5}$ Nonattainment Area</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT A:

Growth Factor Selection Table
<table>
<thead>
<tr>
<th>SECTOR AREA</th>
<th>SOURCE CATEGORY</th>
<th>GROWTH FACTOR</th>
<th>GROWTH FACTOR SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>Stationary Source Fuel Combustion: Residential</td>
<td>1.0305</td>
<td>Population Growth</td>
</tr>
<tr>
<td></td>
<td>Mobile Sources: Paved and Unpaved Roads</td>
<td>1.0305</td>
<td>Population Growth</td>
</tr>
<tr>
<td></td>
<td>Stationary Source Fuel Combustion: Industrial-Natural Gas</td>
<td>1</td>
<td>Fuel Data: Industrial-Natural Gas</td>
</tr>
<tr>
<td></td>
<td>Stationary Source Fuel Combustion: Industrial-LPG</td>
<td>1</td>
<td>Fuel Data: Industrial-LPG</td>
</tr>
<tr>
<td></td>
<td>Stationary Source Fuel Combustion: Commercial-Distillate</td>
<td>1.0921</td>
<td>Fuel Data: Commercial-Distillate</td>
</tr>
<tr>
<td></td>
<td>Industrial Process: Food</td>
<td>0.9355</td>
<td>Employment Data: Food Manufacturing</td>
</tr>
<tr>
<td></td>
<td>Industrial Process: Construction-Residential</td>
<td>1.0618</td>
<td>Employment Data: Construction of Buildings</td>
</tr>
<tr>
<td></td>
<td>Industrial Process: Construction-Industrial/Commercial/Road</td>
<td>0.9705</td>
<td>Employment Data: Heavy Construction</td>
</tr>
<tr>
<td></td>
<td>Industrial Process: Mining and Quarrying</td>
<td>0.94</td>
<td>Employment Data: Mining</td>
</tr>
<tr>
<td></td>
<td>Waste Disposal: Open Burning</td>
<td>1.0179</td>
<td>CT Open Burning Data ('03 to '04 change)</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Area Sources: Forest Fires</td>
<td>0.964</td>
<td>Fire Data ('01 to '02 change)</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Area Sources: Structural Fires</td>
<td>1.091</td>
<td>Fire Data ('03 to '04 change from '02 to '09)</td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Area Sources: Agriculture-Crops</td>
<td>1.0019</td>
<td>Employment Data: Crop Production</td>
</tr>
<tr>
<td>POINT</td>
<td>External Combustion Boilers: Electric Generation-Coal</td>
<td>1.1282</td>
<td>Fuel Data: Electric Power-Steam Coal</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Electric Generation-Distillate</td>
<td>0.8571</td>
<td>Fuel Data: Electric Power-Distillate</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Industrial-Natural Gas</td>
<td>1.0588</td>
<td>Fuel Data: Industrial-Distillate</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Industrial-Liquid Waste</td>
<td>1</td>
<td>Fuel Data: Industrial-Natural Gas</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Industrial-Space Heaters-Natural Gas</td>
<td>1</td>
<td>Fuel Data: Industrial-LPG</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Commercial-Residual</td>
<td>1</td>
<td>Fuel Data: Commercial-Distillate</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Commercial-Distillate</td>
<td>1.125</td>
<td>Fuel Data: Commercial-Residual</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Commercial-Natural Gas</td>
<td>1.0657</td>
<td>Fuel Data: Commercial-Distillate</td>
</tr>
<tr>
<td></td>
<td>External Combustion Boilers: Commercial-LPG</td>
<td>1</td>
<td>Fuel Data: Commercial-LPG</td>
</tr>
<tr>
<td></td>
<td>Internal Combustion Engines: Electric Generation-Distillate</td>
<td>0.8571</td>
<td>Fuel Data: Electric Power-Distillate</td>
</tr>
<tr>
<td></td>
<td>Internal Combustion Engines: Electric Generation-Natural Gas</td>
<td>1.1063</td>
<td>Fuel Data: Electric Power-Natural Gas</td>
</tr>
<tr>
<td></td>
<td>Internal Combustion Engines: Industrial-Distillate</td>
<td>1.0588</td>
<td>Fuel Data: Industrial-Distillate</td>
</tr>
</tbody>
</table>
Internal Combustion Engines: Commercial-Distillate
Internal Combustion Engines: Commercial-Natural Gas
Internal Combustion Engines: Commercial-LPG
Internal Combustion Engines: Engine Testing-Gasoline
Industrial Process: Chemical Manufacturing
Industrial Process: Chemical Manufacturing-Plastics Production
Industrial Process: Food and Agriculture-Bakeries
Industrial Process: Food and Agriculture-Tobacco Processing
Industrial Process: Primary Metal Production
Industrial Process: Secondary Metal Production
Industrial Process: Mineral Products
Industrial Process: Petroleum Industry
Industrial Process: Plastics and Rubber
Industrial Process: Textile Products
Industrial Process: Fabricated Metal Products
Industrial Process: Health Care-Hospitals
Industrial Process: In-process Fuel Use-Natural Gas
Industrial Process: In-process Fuel Use-Distillate
Industrial Process: In-process Fuel Use-LPG
Industrial Process: Miscellaneous Manufacturing
Petroleum and Solvent Evaporation: Organic Solvent Evaporation
Petroleum and Solvent Evaporation: Surface Coating Operations
Petroleum and Solvent Evaporation: Surface Coating Operations-Printing
Petroleum and Solvent Evaporation: Surface Coating Operations-Metal
Petroleum and Solvent Evaporation: Surface Coating Operations-Wood
Petroleum and Solvent Evaporation: Surface Coating Operations-Aircraft
Petroleum and Solvent Evaporation: Petroleum Storage
Petroleum and Solvent Evaporation: Printing/Publishing
Petroleum and Solvent Evaporation: Petroleum Product Transportation

NON-ROAD

Mobile Sources: Aircraft
Mobile Sources: Marine Vessels
Mobile Sources: Railroad Equipment

1.0921 Fuel Data: Commercial-Distillate
1.0657 Fuel Data: Commercial-Natural Gas
1 Fuel Data: Commercial-LPG
1 Fuel Data: Commercial-Motor Gasoline
1.1024 Employment Data: Chemical Manufacturing
0.9591 Employment Data: Plastics and Rubber
0.9355 Employment Data: Food Manufacturing
1.1556 Employment Data: Beverage and Tobacco
0.8713 Employment Data: Primary Metal Manufac.
0.915 Employment Data: Fabricated Metal Product
0.8982 Employment Data: Nonmetallic mineral
0.9591 Employment Data: Plastics and Rubber
1.0204 Fuel Data: Industrial-Other Petroleum
0.9254 Textile Product Mills
0.915 Employment Data: Fabricated Metal Product
1.0709 Employment Data: Health and Personal Care
1 Fuel Data: Industrial-Natural Gas
1.0588 Fuel Data: Industrial-Distillate
1 Fuel Data: Industrial-LPG
0.9841 Employment Data: Miscellaneous Manufac.
1.1024 Employment Data: Chemical Manufacturing
1.1024 Employment Data: Chemical Manufacturing
0.8386 Employment Data: Printing and Related
1.0435 Employment Data: Furniture and Related
1.0679 Employment Data: Wood Product Manufac.
0.9929 Employment Data: Air Transportation
1.0921 Employment Data: Warehousing/Storage
1.0503 Employment Data: Publishing Industries
1.1252 Fuel Data: Delivered Energy-Petroleum

1.2923 Aircraft Operation
1.1021 Employment Data: Water Transportation
0.529 EIA Locomotive Fuel Data
ATTACHMENT B:
Modeling Inputs Table
ATTACHMENT B

SECTOR | ON-ROAD | NON-ROAD
MODEL
MOBILE6.2 | NONROAD2005

Temperature Data

Diesel Sulfur

Registration Distribution

Inspection & Maintenance Program

VMT Data

MOBILE6.2 Temperature Data:

<table>
<thead>
<tr>
<th>Two Season</th>
<th>Max Temp (F)</th>
<th>Min Temp (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (Apr-Sep)</td>
<td>74.9</td>
<td>51.9</td>
</tr>
<tr>
<td>Winter (Oct-Mar)</td>
<td>45.4</td>
<td>26.2</td>
</tr>
</tbody>
</table>

NONROAD2005 Temperature Data:

<table>
<thead>
<tr>
<th>Four Season</th>
<th>Max Temp (F)</th>
<th>Min Temp (F)</th>
<th>Average Temp + (\frac{2}{3}(\text{Max-Min}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (Jun-Aug)</td>
<td>81.6</td>
<td>58.7</td>
<td>74</td>
</tr>
<tr>
<td>Fall (Sep-Nov)</td>
<td>61.2</td>
<td>40.3</td>
<td>54.2</td>
</tr>
<tr>
<td>Winter (Dec-Feb)</td>
<td>37.5</td>
<td>19.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Spring (Mar-May)</td>
<td>60.3</td>
<td>37.5</td>
<td>52.7</td>
</tr>
</tbody>
</table>

MOBILE6.2 Diesel Sulfur:

<table>
<thead>
<tr>
<th>Year</th>
<th>Summer Diesel Sulfur</th>
<th>Winter Diesel Sulfur</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>367 ppm</td>
<td>340 ppm</td>
</tr>
<tr>
<td>2009</td>
<td>43 ppm</td>
<td>43 ppm</td>
</tr>
</tbody>
</table>

NONROAD2005 Diesel Sulfur:

<table>
<thead>
<tr>
<th>Year</th>
<th>Diesel Sulfur %</th>
<th>Marine Diesel Sulfur %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>0.2284</td>
<td>0.2637</td>
</tr>
<tr>
<td>2009</td>
<td>0.0351</td>
<td>0.0435</td>
</tr>
</tbody>
</table>

*Model Default Value

MOBILE6.2 VMT Data:

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Summer VMT</th>
<th>Total Winter VMT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>7,886,520,325</td>
<td>7,098,094,593</td>
</tr>
<tr>
<td>2009</td>
<td>8,447,294,463</td>
<td>7,601,533,618</td>
</tr>
</tbody>
</table>
MOBILE 6.2 Inspection & Maintenance Program (2002):

> 2002 CT I/M PROGRAMS Revised 12/13/04
> File has been updated w/2002 stringency/compliance/waiver rates.
> 12/13/04 draft of I/M File. Current Name CTIM02.d

> Annual I/M test for the pre-81 CARS
> Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
I/M PROGRAM : 1 1998 2050 1 T/O ASM 2525 PHASE-IN
I/M MODEL YEARS : 1 1978 1980
I/M VEHICLES : 1 22222 11111111 1
I/M EXEMPTION AGE : 1 25
I/M STRINGENCY : 1 22.0
I/M COMPLIANCE : 1 94.9
I/M WAIVER RATES : 1 5.55 3.83

> Biennial I/M for the post-80 CARS
> Idle test started 1983 was upgraded to an ASM 2525 test in 1998.
I/M PROGRAM : 2 1998 2050 2 T/O ASM 2525 PHASE-IN
I/M MODEL YEARS : 2 1981 2050
I/M VEHICLES : 2 22222 11111111 1
I/M EXEMPTION AGE : 2 25
I/M STRINGENCY : 2 22.0
I/M COMPLIANCE : 2 94.9
I/M WAIVER RATES : 2 5.55 3.83

> Annual Evap test for the pre-81 cars
I/M PROGRAM : 3 1983 2050 1 T/O GC
I/M MODEL YEARS : 3 1978 1980
I/M VEHICLES : 3 22222 21111111 1
I/M EXEMPTION AGE : 3 25
I/M COMPLIANCE : 3 94.9
I/M WAIVER RATES : 3 0.00 0.00

> Biennial Evap test for the post-81 cars
I/M PROGRAM : 4 1983 2050 2 T/O GC
I/M MODEL YEARS : 4 1981 2050
I/M VEHICLES : 4 22222 21111111 1
I/M EXEMPTION AGE : 4 25
I/M COMPLIANCE : 4 94.9
I/M WAIVER RATES : 4 0.00 0.00

> Annual I/M test for the pre-81 Trucks (GVWR 8,501-10,000lb)
I/M PROGRAM : 5 1983 2050 1 T/O IDLE
I/M MODEL YEARS : 5 1978 1980
I/M VEHICLES : 5 11111 21111111 1
I/M EXEMPTION AGE : 5 25
I/M STRINGENCY : 5 22.0
I/M COMPLIANCE : 5 94.9
I/M WAIVER RATES : 5 5.55 3.83

> Biennial I/M test for the post-80 Trucks (GVWR 8,501-10,000lb)
I/M PROGRAM : 6 1983 2050 2 T/O IDLE
I/M MODEL YEARS : 6 1981 2050
I/M VEHICLES : 6 11111 21111111 1
I/M EXEMPTION AGE : 6 25
I/M STRINGENCY : 6 22.0
I/M COMPLIANCE : 6 94.9
I/M WAIVER RATES : 6 5.55 3.83

MOBILE6.2 Inspection & Maintenance Program (2009):

>CT I/M PROGRAMS for all years 2005 and later (modified Jun 05
PMB/AG to reflect DMV info that 8,501-10,000 lb get TSI & GC (no
OBD)
>Biennial OBDII I/M "tailpipe" test for post-MY1995 gasoline
vehicles up to 8,500 lbs GVWR. Program start year reflects OBD test
that replaced the ASM test (in operation since 1998) which in turn
replaced the Idle test (in operation since 1983) per agreement with
EPA.
I/M PROGRAM : 1 1983 2050 2 TRC OBD I/M
I/M MODEL YEARS : 1 1996 2050
I/M GRACE PERIOD : 1 4
I/M EXEMPTION AGE : 1 25
I/M VEHICLES : 1 22222 11111111 1
I/M STRINGENCY : 1 22.0
I/M COMPLIANCE : 1 96.0
I/M WAIVER RATES : 1 1.0 1.0

>Biennial OBDII evaporative "test" for post-MY1995 gasoline
vehicles up to 8,500 lbs GVWR
I/M PROGRAM : 2 1983 2050 2 TRC EVAP OBD
I/M MODEL YEARS : 2 1996 2050
I/M GRACE PERIOD : 2 4
I/M EXEMPTION AGE : 2 25
I/M VEHICLES : 2 22222 11111111 1
I/M COMPLIANCE : 2 96.0
I/M WAIVER RATES : 2 1.0 1.0

>Biennial 2500/IDLE I/M tailpipe test for all HDGT 8,501 - 10,000
lbs GVWR (per above comment)
I/M PROGRAM : 3 1983 2050 2 TRC 2500/IDLE
I/M MODEL YEARS : 3 1981 2050
I/M GRACE PERIOD : 3 4
I/M EXEMPTION AGE : 3 25
I/M VEHICLES : 3 11111 21111111 1
I/M STRINGENCY : 3 22.0
I/M COMPLIANCE : 3 96.0
I/M WAIVER RATES : 3 1.0 1.0

>Biennial GC evaporative "test" for all HDGT 8,501 - 10,000 lbs (per above comment)
I/M PROGRAM : 4 1983 2050 2 TRC GC
I/M MODEL YEARS : 4 1981 2050
I/M GRACE PERIOD : 4 4
I/M EXEMPTION AGE : 4 25
I/M VEHICLES : 4 11111 21111111 1
I/M COMPLIANCE : 4 96.0
I/M WAIVER RATES : 4 1.0 1.0

>Biennial ASM I/M tailpipe test for pre-96 gasoline vehicles up to 8,500 lbs GVWR
I/M PROGRAM : 5 1983 2050 2 TRC ASM 2525 FINAL
I/M MODEL YEARS : 5 1981 1995
I/M GRACE PERIOD : 5 4
I/M EXEMPTION AGE : 5 25
I/M VEHICLES : 5 22222 11111111 1
I/M STRINGENCY : 5 22.0
I/M COMPLIANCE : 5 96.0
I/M WAIVER RATES : 5 1.0 1.0

>Biennial Gas Cap evaporative test for pre-96 gasoline vehicles up to 8,500 lbs GVWR
I/M PROGRAM : 6 1983 2050 2 TRC GC
I/M MODEL YEARS : 6 1981 1995
I/M GRACE PERIOD : 6 4
I/M EXEMPTION AGE : 6 25
I/M VEHICLES : 6 22222 11111111 1
I/M COMPLIANCE : 6 96.0
I/M WAIVER RATES : 6 1.0 1.0
MOBILE6.2 Registration Distribution:

* SWP 12/07/2002: 2002 CT Registration Data provided by Klausmeier and ERG to
 * be processed via a VIN Decoder and matched to a light duty vehicle class.
* Motorcycles were analyzed separately by the Connecticut Department of Environmental
 * Protection. Light duty vehicle results were specified to or modified to:
 * 1) exclude Model Year 2003 data;
 * 2) include all Model Year 2002 vehicles (no fraction was eliminated);
 * 3) include all pre-1972 data, as well as all other data excluded by ERG that
 * could be matched up with a Mobile 6 vehicle type and model year;
* Note that CT data were used for only LDV, LDT1, LDT2, LDT3, and LDT4 vehicles
 * and Motorcycles; all others age distributions used were MOBILE6 default values.

* Calendar Year: 2002.000User-Input
* This file contains some CT specific and some default MOBILE6 values for
 * the distribution of vehicles by age for July of any calendar year. Data was
 * pulled from the DMV Grand List 10/1/2002, but should correspond to July considering
 * that all the distribution excludes any model year 2003 vehicles.
* There are sixteen (16) sets of values representing 16 combined gasoline/diesel vehicle
 * class distributions. These distributions are split for gasoline and diesel
 * using the separate input (or default) values for diesel sales fractions.
* Each distribution contains 25 values, which represent the fraction of
 * all vehicles in that class (gasoline and diesel) of that age in July.
* The first number is for age 1 (calendar year minus model year plus one)
 * and the last number is for age 25. The last age includes all vehicles
 * of age 25 or older. The first number in each distribution is an integer
 * which indicates which of the 16 vehicle classes are represented by the
 * distribution. The sixteen vehicle classes are:

* 1 LDV Light-Duty Vehicles (Passenger Cars)
* 2 LDT1 Light-Duty Trucks 1 (0-6,000 lbs. GVWR, 0-3750 lbs. LVW)
* 3 LDT2 Light Duty Trucks 2 (0-6,001 lbs. GVWR, 3751-5750 lbs. LVW)
* 4 LDT3 Light Duty Trucks 3 (6,001-8500 lbs. GVWR, 0-3750 lbs. LVW)
* 5 LDT4 Light Duty Trucks 4 (6,001-8500 lbs. GVWR, 3751-5750 lbs. LVW)
* 6 HDV2B Class 2b Heavy Duty Vehicles (8501-10,000 lbs. GVWR)
* 7 HDV3 Class 3 Heavy Duty Vehicles (10,001-14,000 lbs. GVWR)
* 8 HDV4 Class 4 Heavy Duty Vehicles (14,001-16,000 lbs. GVWR)
* 9 HDV5 Class 5 Heavy Duty Vehicles (16,001-19,500 lbs. GVWR)
* 10 HDV6 Class 6 Heavy Duty Vehicles (19,501-26,000 lbs. GVWR)
* 11 HDV7 Class 7 Heavy Duty Vehicles (26,001-33,000 lbs. GVWR)
* 12 HDV8A Class 8a Heavy Duty Vehicles (33,001-60,000 lbs. GVWR)
* 13 HDV8B Class 8b Heavy Duty Vehicles (>60,000 lbs. GVWR)
The 25 age values are arranged in two rows of 10 values followed by a row with the last 5 values. Comments (such as this one) are indicated by an asterisk in the first column. Empty rows are ignored. Values are read "free format," meaning any number may appear in any row with as many characters as needed (including a decimal) as long as 25 values follow the initial integer value separated by a space.

* If all 28 vehicle classes do not need to be altered from the default values, then only the vehicle classes that need to be changed need to be included in this file. The order in which the vehicle classes are read does not matter, however each vehicle class set must contain 25 values and be in the proper age order.

REG DIST

RESULTING MOBILE6-BASED REGISTRATION FRACTIONS LDV, LDT1, LDT2, LDT3, LDT4 and MC CT Specific

MOBILE6 REGISTRATION FRACTIONS BY VEHICLE CLASS AND AGE

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0.0700 0.0803 0.0851 0.0757 0.0708 0.0714 0.0618 0.0705 0.0593 0.0569</td>
<td>2 0.0745 0.0458 0.0350 0.0342 0.0412 0.0415 0.0594 0.0691 0.0708 0.0544</td>
<td>3 0.1051 0.1115 0.1209 0.1029 0.1030 0.0930 0.0697 0.0677 0.0586 0.0453</td>
<td>4 0.0824 0.0993 0.0875 0.0994 0.0632 0.0586 0.0497 0.0643 0.0526 0.0378</td>
<td>5 0.1580 0.1399 0.1159 0.1244 0.0929 0.0778 0.0489 0.0589 0.0397 0.0181</td>
<td>6 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430</td>
<td>6 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430</td>
</tr>
<tr>
<td></td>
<td>0.0490 0.0427 0.0416 0.0396 0.0331 0.0280 0.0198 0.0131 0.0087 0.0047</td>
<td>0.0404 0.0505 0.0555 0.0705 0.0639 0.0713 0.0489 0.0278 0.0169 0.0081</td>
<td>0.0311 0.0218 0.0128 0.0144 0.0191 0.0053 0.0046 0.0033 0.0026 0.0018</td>
<td>0.0273 0.0204 0.0280 0.0418 0.0451 0.0321 0.0269 0.0201 0.0128 0.0081</td>
<td>0.0036 0.0024 0.0019 0.0051 0.0296</td>
<td>0.0017 0.0005 0.0002 0.0069 0.0236</td>
<td>0.0017 0.0005 0.0002 0.0069 0.0236</td>
</tr>
<tr>
<td></td>
<td>0.0027 0.0021 0.0016 0.0023 0.0092</td>
<td>0.006 0.0053 0.0008 0.001 0.0072</td>
<td>0.0007 0.0006 0.0006 0.0009 0.0027</td>
<td>0.0036 0.0024 0.0019 0.0051 0.0296</td>
<td>0.0017 0.0005 0.0002 0.0069 0.0236</td>
<td>0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167</td>
<td>0.0152 0.0138 0.0126 0.0114 0.0499</td>
</tr>
<tr>
<td>Page</td>
<td>Data</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430 0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167 0.0152 0.0138 0.0126 0.0114 0.0105 0.0098 0.0091 0.0085 0.0080 0.0075 0.0071 0.0067</td>
<td>HDV4 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDV5 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDV6 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDV7 - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDV8a - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDV8b - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0157 0.0148 0.0140 0.0133 0.0126 0.0120 0.0114 0.0109</td>
<td>HDBS - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.0393 0.0734 0.0686 0.0641 0.0599 0.0559 0.0522 0.0488 0.0456 0.0426 0.0398 0.0372 0.0347 0.0324 0.0303 0.0283 0.0264 0.0247 0.0231 0.0216 0.0201 0.0188 0.0176 0.0165 0.0155 0.0143 0.0132 0.0121 0.0111 0.0101 0.0092</td>
<td>HDBT - EPA MOBILE 6 Default Combined Diesel and Gas Vehicle Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.0307 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0613 0.0611 0.0607 0.0595 0.0568 0.0511 0.0406 0.0254 0.0121 0.0099 0.0081 0.0066 0.0054 0.0044 0.0037 0.0014</td>
<td>Motorcycles - Connecticut Specific 2002 Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ATTACHMENT C:

Weight of Evidence
ATTACHMENT C

WEIGHT OF EVIDENCE

The emission inventory projections described in the main body of this document demonstrate that adopted control programs will ensure progress toward attaining the 1997 annual PM$_{2.5}$ NAAQS, with an overall reduction between 2002 and 2009 of 27% for NOx emissions and 2.5% for direct PM$_{2.5}$ emissions. As discussed below, monitored PM$_{2.5}$ levels and a soon-to-be-released review of wood burning sources indicate that current direct PM$_{2.5}$ inventory estimates of re-entrained road dust and residential wood burning emissions may be significantly overestimated. This information provides additional weight of evidence that even greater progress towards PM$_{2.5}$ attainment will occur.

Re-entrained Road Dust Emissions

The 2002 MANE-VU Emissions Inventory Version 3 road dust emissions used in this report reflect revised emission estimation methods released by EPA in March 2006. The road dust emissions from the 2002 MANE-VU Emissions Inventory Version 3 are identical to those contained in EPA’s 2002 Final NEI Version 2.0 which was released on October 23, 2006. Although the revised methods provide lower emission estimates than previous procedures, comparison to available speciated PM$_{2.5}$ monitoring data indicates that road dust emissions may still be overestimated. This can be shown by comparing emission inventory estimates and monitored levels for combustion-related sources to those for road dust sources.

The 2002 MANE-VU inventory estimates Connecticut combustion-related carbonaceous PM$_{2.5}$ emissions as about 14,500 tons per year. Statewide dust-related PM$_{2.5}$ emissions in Connecticut are estimated as about 4,807 tons per year, or about 33% of the carbonaceous emissions. However, using Connecticut speciated monitoring data (see Table C-1), the actual measured ratio of the natural dust component to the carbonaceous component is about 6.5%. Assuming the inventory estimates of carbonaceous PM$_{2.5}$ emissions is correct and the monitoring data is representative of statewide conditions, statewide dust-related emissions are more likely on the order of 943 tons per year (6.5% of 14,500 tons/year). Therefore, MANE-VU PM$_{2.5}$ fugitive dust inventory emissions are likely overestimated by about a factor of five (4,807 tons per year divided by 943 tons/year). Although these are statewide calculations, the level of overestimation would be comparable when applied to Fairfield and New Haven counties, which comprise the Connecticut portion of the NY-NJ-CT PM$_{2.5}$ Nonattainment Area.

Table C-1
Connecticut Speciated PM2.5 Data

<table>
<thead>
<tr>
<th>Site</th>
<th>Dates</th>
<th>Carbonaceous (%)</th>
<th>Natural Dust (%)</th>
<th>Ratio (Natural to Carbonaceous) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Westport</td>
<td>Apr-02 to May-03</td>
<td>51.36</td>
<td>3.38</td>
<td>6.58</td>
</tr>
<tr>
<td>New Haven (State Street)</td>
<td>Jun-03 to Feb-04</td>
<td>45.43</td>
<td>2.90</td>
<td>6.39</td>
</tr>
<tr>
<td>New Haven (Crisculo Park)</td>
<td>Feb-04 to Mar-06</td>
<td>48.41</td>
<td>3.23</td>
<td>6.66</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>48.41</td>
<td>3.17</td>
<td>6.54</td>
</tr>
</tbody>
</table>
Residential Wood Burning Emissions

In addition, a recent study conducted by OMNI Environmental Services, Inc, for the Mid-Atlantic Regional Air Management Association (MARAMA) indicates that residential wood burning emission inventory estimates are likely over-estimated\(^7\). OMNI concludes that statewide residential wood PM\(_{2.5}\) emissions in Connecticut are actually about 4,400 tons per year. Both the 2002 MANE-VU inventory and EPA’s 2002 NEI estimate statewide residential wood PM\(_{2.5}\) emissions are about 8,000 tons per year. Therefore, MANE-VU and NEI emission inventory estimates of PM\(_{2.5}\) emissions from residential wood burning in Connecticut are about 80% higher than the values reported by OMNI.

Conclusion

If the area source emissions of Table 1 in Section III of the TSD were adjusted downward to reflect the overestimations of dust and wood burning emissions, overall reductions in direct PM\(_{2.5}\) emissions between 2002 and 2009 would be even greater than the 2.5% cited in this report. Based on this weight of evidence analysis, CT DEP is confident that current programs will ensure progress towards attainment through 2009.
