IMPROVEMENTS TO ROAD SAFETY IMPROVEMENT
SELECTION PROCEDURES FOR CONNECTICUT

FINAL REPORT
June 2016
John Ivan, Amy Burnicki, Kai Wang and Sha Mamun

JHR 16-328 Project 14-01

This research was sponsored by the Joint Highway Research Advisory Council (JHRAC) of the
University of Connecticut and the Connecticut Department of Transportation and was performed
through the Connecticut Transportation Institute of the University of Connecticut.

The contents of this report reflect the views of the authors who are responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the official views or
policies of the University of Connecticut or the Connecticut Department of Transportation. This
report does not constitute a standard, specification, or regulation.



TECHNICAL REPORT DOCUMENTATION PAGE

1. Report No. 2. Government Accession No. |3. Recipient’s Catalog No.
JHR 16-328 N/A

4. Title and Subtitle 5. Report Date
Improvements to Road Safety Improvement Selection June 2016

Procedures for Connecticut 6. Performing Organization Code

N/A
7. Author(s) 8. Performing Organization Report No.
John Ivan, Amy Burnicki, Kai Wang and Sha Mamun
JHR 16-328
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
University of Connecticut N/A

Connecticut Transportation Institute

Storrs, CT 062695202 11. Contract or Grant No.

N/A
12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered
Connecticut Department of Transportation FINAL
2800 Berlin Turnpike 14. Sponsoring Agency Code
Newington, CT 06111 CCTRP 14-01
15. Supplementary Notes

This study was conducted under the Connecticut Cooperative Transportation Research Program (CCTRP),
http://www.cti.uconn.edu/cctrp/.

16.

Abstract

Estimating and applying safety performance functions (SPFs), or models for predicting expected crash counts,
for roads under local jurisdiction is often challenging due to the lack of vehicle count data to be used for
exposure, which is a critical variable in such functions. This report describes estimation of SPFs for local road
intersections and segments in Connecticut using socio-economic and network topological data instead of traffic
counts as exposure. SPFs are developed at the traffic analysis zone (TAZ) level, where the TAZs are
categorized into six homogeneous clusters based on land cover intensities and population density. SPFs were
estimated for each cluster to predict the number of intersection and segment crashes occurring in each TAZ.
One aggregate SPF using the entire dataset was also estimated to compare with the individual cluster SPFs.
The number of intersections and the total local roadway length were also used as exposure in the intersection
and segment SPFs, respectively. Total population, retail and non-retail employment and average household
income are found to be significant variables. Ten percent of the observed data points were reserved for out of
sample testing and in all cases, these out of sample predictions were as good as the in sample predictions. The
SPFs are applied in two Connecticut towns to illustrate the usefulness of the SPFs as a network screening tool.

17. Key Words 18. Distribution Statement
Safety performance function, crash count, local No restrictions. This document is available to the public
road, cluster analysis through the
National Technical Information Service
Springfield, Virginia 22161
19. Security Classif. (of this report) |20. Security Classif. (of this page) | 21. No. of 22. Price
Pages
Unclassified Unclassified 77 N/A
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

i




ACKNOWLEDGMENTS

The authors would like to thank Mrs. Judy B. Raymond of the Connecticut Department of
Transportation for kindly providing demographic data to support this effort.

il



@ A UR

APPROXIMATE CONVERSIONS TO SI UNITS

SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL
LENGTH
in inches 254 millimeters mm
ft feet 0.305 meters m
yd yards 0.914 meters m
mi miles 1.61 kilometers km
AREA
in® square inches 645.2 square millimeters mm®
ft? square feet 0.093 square meters m*
yd* square yard 0.836 square meters m®
ac acres 0.405 hectares ha
mi’ square miles 2.59 square kilometers km?
VOLUME
floz fluid ounces 29.57 milliliters mL
gal gallons 3.785 liters &
ft’ cubic feet 0.028 cubic meters m’
yd® cubic yards 0.765 cubic meters m®
NOTE: volumes greater than 1000 L shall be shown in m*
MASS
oz ounces 28.35 grams g
Ib pounds 0.454 kilograms kg
T short tons (2000 Ib) 0.907 megagrams (or "metric ton") Mg (or "t")
TEMPERATURE (exact degrees)
°F Fahrenheit 5 (F-32)/9 Celsius e
or (F-32)/1.8
ILLUMINATION
fc foot-candles 10.76 lux Ix
fl foot-Lamberts 3.426 candela/m® cdim®
FORCE and PRESSURE or STRESS
Ibf poundforce 445 newtons N
Ibffin® poundforce per square inch 6.89 kilopascals kPa
APPROXIMATE CONVERSIONS FROM S| UNITS
SYMBOL WHEN YOU KNOW MULTIPLY BY TO FIND SYMBOL
LENGTH
mm millimeters 0.039 inches in
m meters 3.28 feet ft
m meters 1.09 yards yd
km kilometers 0.621 miles mi
AREA
mm?® square millimeters 0.0016 square inches in®
m’ square meters 10.764 square feet ft?
m? square meters 1.195 square yards yd®
ha hectares 247 acres ac
km? square kilometers 0.386 square miles mi’
VOLUME
mL milliliters 0.034 fluid ounces floz
L liters 0.264 gallons gal
m’ cubic meters 35.314 cubic feet ft
m® cubic meters 1.307 cubic yards yd’
MASS
g grams 0.035 ounces oz
kg kilograms 2.202 pounds Ib
Mg (or "t") megagrams (or "metric ton") 1.103 short tons (2000 Ib) T
TEMPERATURE (exact degrees)
6 Celsius 1.8C+32 Fahrenheit 7
ILLUMINATION
Ix lux 0.0929 foot-candles fc
cd/m® candela/m® 0.2919 foot-Lamberts fl
FORCE and PRESSURE or STRESS
N newtons 0.225 poundforce Ibf
kPa kilopascals 0.145 poundforce per square inch Ibffin*

*Sl is the symbol for the International System of Units. Appropriate rounding should be made to comply with Section 4 of ASTM E380.

(Revised March 2003)
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INTRODUCTION

A Safety Performance Function (SPF) is an equation used to predict crash counts at a location as
a function of exposure and other roadway characteristics (e.g. number of lanes, lane width,
shoulder width) (7). One of the uses for safety performance functions (SPFs) is estimating the
expected number of crashes on traffic facilities to identify road locations with higher crash counts,
and implement cost-effective countermeasures to reduce crashes (2). SPFs are often developed for
different traffic facilities such as road segments and intersections. Local roads owned and operated
by local entities including towns, counties and tribal governments play an important role in the
roadway network, as approximately 60 percent of all road miles in the U.S. are maintained by these
jurisdictions (3). A recent lowa study (4) reported that local roads had higher crash rates compared
to primary roads under State jurisdiction and the reported local road crash rate was 1.5 times higher
than that of primary roads from 1974 to 2000. As a result, traffic safety on local roads is important
to both traffic safety organizations and engineers. Given this situation, it is important to develop
accurate tools to predict the number of crashes occurred on local roads to support identifying sites
with promise for safety improvements and implementing effective countermeasures to reduce
crash volume or severity.

The Highway Safety Manual (HSM) (/) provides SPFs for two lane rural highways, multilane
rural highways, urban and suburban arterials, freeways and freeway ramp junctions. The SPFs in
HSM were estimated using data collected from a limited number of USA States, including
Washington, California, Minnesota, Texas, Michigan, North Carolina and Illinois. Because crash
relationships in these states are not necessarily representative of those in the entire country, the
HSM recommends a calibration procedure to adjust the predicted crash counts for individual
jurisdiction in using the prediction from the SPF. The HSM SPFs include traffic counts for
intersections or roadway segments as the most critical variables in accurately predicting the
number of crashes (7, 3, 6). This presents a problem for roads under local jurisdiction, where traffic
counts are generally not available because it is economically impractical to implement traffic
counting programs for so many facilities on which the traffic volume is typically below 400 per
day (4). In order to implement highway safety improvement strategies on these low volume local
roads, new crash prediction approaches are desirable, in which the traffic counts are not required.

The objective of this study was to estimate SPFs for both intersections and segments on roads
under local jurisdiction in the State of Connecticut using demographic data as a replacement for
traffic count data. The SPFs are estimated at the level of Traffic Analysis Zone (TAZ), instead of
the intersection or roadway segment level. The intersection counts (i.e. the number of intersections
in a TAZ) and segment mileage (i.e. total local roadway length in a TAZ) are used as exposure in
this study in lieu of traffic volume. Demographic records such as population, total retail and non-
retail employment, household income and vehicle availability work in tandem with the exposure
to predict the estimated crash counts. To account for data and crash relationship heterogeneity, the
TAZs in the entire state are categorized into six clusters based on the percentage of three land
cover categories — high, medium and low intensities — and the population density (i.e. the number
of population per km?). A different SPF was estimated for each cluster, and the similarities and
differences among these functions are discussed. We also include an example application of the
functions as a network screening tool in two Connecticut towns.






LITERATURE REVIEW

SPFs have been estimated for local roads by various researchers at two levels: the facility level
(e.g. roadway segment and intersection) and the zonal level (e.g. TAZ). Among facility level
models, Vogt (6) provides a good review of the factors associated with crashes on local roads
according to past research studies. These include channelization (right and left turn lane), number
of driveways, sight distance, intersection angle, median width, surface width, shoulder width,
signal characteristics, lighting, roadside condition, truck percentage in the traffic volume, posted
speed, and weather. Most research on two-lane roads confirms traffic volume as the major
explanatory factor for traffic crashes, which is unfortunate for the cases where the traffic volume
is not available (7, 8). There is little literature on investigating alternative exposure measures in
addition to or in place of traffic volume for predicting crashes. Bindra et al. (9) considered the use
of geographic information system (GIS) land use inventories to supplement traffic volumes as
exposure for estimating SPFs for predicting segment-intersections crashes for rural two-lane and
urban two-and four-lane undivided roads. They concluded that the number of trips generated and
the land use data (i.e., population, retail and non-retail employment, and driveway data) were good
predictors for estimating segment-intersection crashes, that is, crashes on segments located at
minor roads and driveways without traffic counts.

Zonal SPFs (ZSPFs), of which the most popular is TAZ level, make use of highly available zonal-
level variables (/0) TAZ level SPFs were initially introduced by Levine et al. (/1). Their study
uses a set of socioeconomic and network variables to predict the number of crashes by TAZ.
Similarly, Pulugurtha et al. (12) used socioeconomic and network variables to develop TAZ level
SPFs to estimate the crash counts by severity level (injury and property damage only crashes).
Ladron de Guevara et al. (13), Lovegrove and Sayed (/4), Lovegrove (1/5) and Hadayeghi et al.
(16) developed TAZ level SPFs to estimate the number of both intersection and segment crashes.
Factors such as population density, the number of employees and the intersection density were
considered as predictors for the number of crashes. Furthermore, Khondakar et al. (17) found that
TAZ level SPFs can safely be transferred both temporally and spatially. Noland and Quddus (/8)
showed that TAZs with high employment density had more traffic crashes, whereas in urbanized
areas with more densely populated TAZs fewer crashes were observed.

Recently, an analysis tool (PLANSAFE) was developed on a National Cooperative Highway Research
Program (NCHRP) project (19) to predict the expected crash counts by TAZ. The predictors include
population, employment and some land use intensity variables. The purpose was to use the predicted
crash counts as one of the measures of effectiveness to select the most cost-effective transportation
improvement plan. Another study of TAZ level SPFs by Pirdavani et al. (10) considered establishing
an association between observed crashes and a set of predictor variables in each TAZ. The study
compared models using two different exposures - VHT (total daily vehicle hours traveled) and
VKT (total daily vehicle kilometers traveled) along with network and socio-demographic
variables. The results show that the model containing the combination of two exposures
outperformed the models containing only one of the exposure variables.

Although these TAZ level SPFs are able to estimate crash counts without traffic volume, most of
them were designed to estimate the number of crashes using network and social-demographic
variables efc., without accounting for the data and crash heterogeneity among different types of
TAZs or zones. To address this issue, our study focuses on estimating TAZ level SPFs for local



roads by different TAZ type. The TAZs were clustered into different categories using a data mining
technology (i.e. K-means clustering analysis), based on their land-use intensities and population
density. Socio-demographic data and roadway network data such as population, employment,
income, car ownership, number of local jurisdiction road intersections and total local road length
inside the TAZ are used to predict injury and fatal crash counts. The intention is for some of the
variables to serve in lieu of actual traffic counts which are generally not available for these roads.

The remainder of the paper is organized as follows. The next section presents the methodology
and the process of data collection. The third section describes the estimation of SPFs and the
results. In the final section, the SPFs are applied to the City of Stamford and the Town of Groton
to illustrate the usefulness of the functions as a network screening tool.



METHODOLOGY AND DATA PREPARATION

Our procedure for the estimation of TAZ level SPFs for local roads requires four types of data at
the TAZ level: roadway network shape features, demographic records, geographic/land cover
features and crash records. Below are a brief description of the required data and data sources.

Roadway Network Shape Features

The number of intersections and the total length of roadway under local jurisdiction were extracted
from the 2010 Census TIGER/LINE files for Connecticut (20). The original TIGER/LINE files
contained some errors, such as typos for roadway name and discrepancies in the network
representation of some road links. The network links were carefully checked and the records were
revised accordingly. The number of intersections and the total length of roadways under local
jurisdiction were calculated for each TAZ. Details about our procedures for calculating the number
of intersections and the total length of roadways are provided in the Appendix A.

TAZ Level Demographic Records

TAZ level demographic records were collected from the Census Transportation Planning Package
Database (CTPP, 2010) (27). They include population, retail and non-retail employment,
households, vehicles and average household income summarized by TAZ and used as the
independent variables in safety performance functions. In the 2010 census, 1806 TAZs were
defined for the state of Connecticut. Two of these TAZs were apparently defined to represent
special generators, and have no population or employment, so they were eliminated from the
analysis. The remaining 1804 TAZs were used to estimate the SPFs.

TAZ Level Geographic/Land Cover Features

Land-cover information was collected from the 2011 National Land Cover Database (NLCD) (22).
We calculated the proportion of land area in three developed land-use categories — low, medium
and high intensity development. These values along with the population density were used to
categorize the TAZs into homogeneous groups using K-means clustering analysis (discussed in
the next section). Originally we used only the land cover intensities, but we found that adding the
population density helped to correct aberrant cluster assignments for unique development sites

(e.g., airports).
Crash Records and Integration of Crash to TAZ

Intersection and segment crash records were collected from the Connecticut Crash Data Repository
(CTCDR) (23). As more severe crashes lead to more serious consequence and generate more
interest (particularly among the members of the steering committee for this project), only K (fatal
injury), A (incapacitating injury) and B (non-incapacitating injury) intersection and segment
crashes occurring on roads under local jurisdiction in Connecticut from 2010 to 2012 were
considered. In total, 5403 intersection crashes and 5347 segment crashes were extracted.



Intersection and segment crashes were assigned to TAZs based on their locations. If the crash was
located inside the boundary of a single TAZ, the crash was assigned to this TAZ. If the crash was
located on the boundary of more than one TAZ, it was evenly assigned among the TAZs. Details
about our procedures for assigning crashes are provided in the Appendix A.

Clustering of TAZs

K-means clustering analysis (24) was used to categorize the TAZs into homogeneous groups using
the three land cover intensities and the population density. K-means clustering analysis categorizes
data by maximizing the variation among clusters while minimizing the variation within each
cluster (25, 26). Different numbers of clusters were respectively tested, and the Calinski and
Harabase pseudo-F index (27) was used to select the final number of clusters. The larger the
Calinski and Harabase pseudo-F index, the more accurate is the clustering analysis.

The optimum number of clusters was found to be six. Figure 1(a) shows the distributions of the
three land-use intensities and the population density among the six clusters. The overall land-use
intensity and the population density decrease from cluster 1 to cluster 6. The number of TAZs
assigned into cluster 1 through cluster 6 is 80, 161, 270, 284, 382 and 627, respectively. Figure
1(b) shows the distribution of the six clusters across the state. Note that two TAZs with legend 0
in the western and southeastern areas were eliminated in estimating the safety performance
functions, as these two TAZs have no population. Cluster 6 is the most common cluster type and
is generally rural in nature. The areas with higher land-use intensities (red and orange on the map)
are mainly located in the central and southern parts of the state.
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Figure 2 Distributions of KAB Crashes by Cluster

Figure 2 illustrates the distribution of KAB crashes by cluster. Comparing the two types of crashes,
there are substantially more intersection crashes than segment crashes in clusters 1, 2 and 3, but
fewer intersection crashes than segment crashes in clusters 5 and 6. The two types of crashes have
nearly the same distributions in cluster 4. Figure 3 and Figure 4 display the distributions of the
number of intersections, local roadway mileage and demographic variables by cluster. The number
of intersections increases from cluster 1 to cluster 5, and then decreases to cluster 6. The roadway
mileage increases consistently from cluster 1 to cluster 6. The average household income slightly
increases from cluster 1 to cluster 6. Cluster 1 has the highest average numbers for both retail and
non-retail employment, and cluster 6 has the lowest numbers. One important finding is that the
distribution patterns are similar among population (Figure 3(c)), households (Figure 3(d)) and
vehicles (Figure 4(a)). This is caused by the high correlation among these three factors, which was
also verified by a correlation test. The selection and application of these three correlated variables
will be discussed under SPF development.



The Number of Intersections

100 150
. .

50
\

Total Population (*1000)

200
.

15
|

10
h

(a) distribution of the number of intersections

1

2 3

TETE:

4

5

6

(¢) distribution of total population

Local Roadway Mileage (*1000)

20

Total Households (*1000)

80

60

40

oo

L]

;H;

o

® o o o

1

(b) distribution of local roadway mileage

2 3 4 5

o o

ICQ.
oo o o

6

®e o

(d) distribution of total household

Figure 3 Distributions of Independent Variables by Cluster



© 34
s
o
o
T '
5 : . e .
e-1 ° ! : § 9] ) !
L e 2 .
3 - . ° ° !
: . i3 .oy
© 2 H M
> =1 g
© <] H °
2 . T 3| H
= E} 81 . |
E L]
H g ! ' i
o] 4 £ 4 4 - H . . .
(a) distribution of total vehicles (b) distribution of average household income
1 2 3 4 5 6 1 2 3 4 5 6

10
|

m & éil ééééi

Total Retail Employment (*1000)

4
o oo o
1 @O ® o 0 o
o0 emoce
Total Non-retail Employment (*1000)
.

(¢) distribution of total retail employment (d) distribution of total non-retail employment

Figure 4 Distributions of Independent Variables by Cluster (Continued)

Statistical Methodology

Safety performance functions were estimated to predict the number of intersection and segment
crashes in each TAZ. The number of crashes is estimated by count regression models, such as the
Poisson regression model, formulated as (28):

_exp(—p)u”t

Problyili] == (1)

where Prob[y;|u;] is the probability of y crashes occurring at TAZ i and y; is the expected number
of crashes at TAZ i. Given a vector of covariates X;, which describes the demographic and roadway
characteristics of a TAZ i, and a vector of estimable coefficients f, the y; can be estimated by the
equation:

In(u;) = BX; (2)



The limitation of the Poisson model is that the variance of the data is constrained to be equal to
the mean, i.e.:

Var(y;) = E(yi) = i )

This constraint might be questionable as the variance of crash data is usually greater than the mean,
which is known as over-dispersion (28). The negative binomial regression model addresses this
issue, which is derived by rewriting Equation 2 such that:

ui = exp(BX; + &) 4)

where exp(g;) is an error term assumed to follow a gamma distribution with mean 1 and
variance o2. The distribution of the negative binomial model has the form (28):

1

F[(%)“’i] % ’ 1#i ) (5)

@t (@l [

where /" is a gamma function and the variance of negative binomial model can be written as
follows:

Prob[y;|u;] =

Var(y) = p(1 + ow;) = p; + op? (6)

We define the function for the predicted intersection crashes at TAZ i as follows:

Winei = YIP'exp(By + BoP; + BrR; + BuN; + ByV; + BcCi + BuHy) (7
Where
Uinei =  Predicted intersection crashes in TAZ i
Y = the number of years in the time period
I; = the number of intersections in TAZ i
P; = the population of TAZ i
R; = the total retail employment of TAZ i
N; = the total non-retail employment of TAZ i
V; = the number of vehicles in TAZ i
C; = the average income in TAZ i
H; = the number of households in TAZ i
Bs = the estimated parameters

We define the function for the predicted segment crashes at TAZ i as follows:

Usegi = YLPLexp(By + BpP; + BrR; + ByN; + ByV; + BcCi + By Hy) (8)

10



Where
Usegi = Ppredicted segment crashes in TAZ i
L; =  the mileage of roadways under local jurisdiction in TAZ i
and the remaining variables are as defined above.

11
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VARIABLE SELECTION AND SPF RESULTS

The SPFs were estimated at the TAZ level for each cluster type. One statewide SPF using the
aggregate data (i.e., for all TAZ’s without splitting by cluster) was also estimated for comparison
purposes. When estimating each function, the crash records were randomly divided into two parts:
one part including ninety percent of the observations was used to estimate the function; and the
other part including ten percent of the observations was used to evaluate the function prediction
performance. Three functions, each using one of the correlated independent variables at a time
(population, number of households and number of vehicles), were estimated for both intersection
and segment crashes. These three functions were compared according to the model goodness-of-
fit (Akaike Information Criterion-AIC and Bayesian Information Criterion-BIC). The number of
crashes was predicted using both estimation and prediction datasets for the entire state using the
cluster-based functions and the statewide function to test the efficacy of each approach. Function
performance was compared using two measures of effectiveness (MOEs), Mean Absolute
Deviation (MAD) and Mean Squared Predictor Error (MSPE), proposed by Oh et al. (29). These
criteria are calculated as:

AIC = 2K —21In(L) 9)
BIC = K * In(N) — 2In(L) (10)
1 N
Mean Absolute Deviation (MAD) = NZI)’/} — yil (11)
i=1
L
Mean Squared Predictor Error (MSPE) = NZ()’/} —yi)? (12)
i=1
Where
K = the number of estimated parameters
L = the maximized value of model likelihood function
N = the number of observations
y, = the predicted number of crashes at TAZ i
y; = the observed number of crashes at TAZ i

The smaller the AIC, BIC, MAD or MSPE value, the better is the function performance. Table 1
shows the goodness-of-fit of the cluster based SPFs and Statewide SPFs including one of the
correlated variables at a time. Due to the poorer performance of the function using the number of
vehicles, only the functions including population or the number of households are presented here.
For the statewide SPF, both intersection and segment SPFs have lower AIC and BIC values using
population than using households. For the intersection SPF, the function for clusters 2, 3 and 4
have a lower AIC or BIC value using population as an independent variable than that using the
number of households, while the reverse is observed for clusters 1, 5 and 6. The segment SPFs for
all clusters have lower AIC and BIC values using population than using households.

13



Table 1 Goodness-of-fit of the Cluster Based SPF

Intersection SPF Segment SPF
Cluster SPF Population Households Population Households
AlC BIC AlC BIC AlC BIC AlC BIC

1 432 448 428 444 330 346 334 350
2 887 908 896 917 692 713 718 739
3 1,231 1,256 1,246 1,271 1,081 1,105 1,109 1,134
4
5

1,110 1,135 1,120 1,145 1,051 1,075 1,063 1,088
1,220 1,247 1,219 1,246 1,475 1,502 1,489 1,516

Statewide SPF 6,935 6,972 6,977 7,015 6,826 6,863 6,970 7,008

Table 2 displays the SPF performance for the statewide and cluster-based functions using both
estimation data and prediction data. Based on the MOEs, the cluster-based SPFs using either
population or households are proven to outperform the statewide SPF in crash prediction, as they
have a lower MAD or MSPE value for both estimation data and prediction data. This is to be
expected, as it has the possibility of accounting for heterogeneity related to land cover intensity.
Furthermore, comparing the cluster-based SPF including population with the one including the
number of households, the cluster-based SPF with population slightly outperforms the one with
the number of households. Additionally, it seems that the SPF performance using the prediction
data are even better than those using the estimation data. This may be due to the smaller size of
the prediction data set, but it also demonstrated that there is no over-fitting to the estimation data,
and that the functions are transferable within Connecticut. Therefore, considering all of these
MOEs (model fit and prediction), the cluster-based SPFs with population were selected.

Table 2 SPF Prediction Performance

MOEs Statewide Statewide Cluster-based Cluster-based
SPF SPF SPF SPF
(Population)  (Households)  (Population)  (Households)

Intersection SPF

MAD Estimation 2.65 2.72 1.95 1.95
MAD Prediction 2.65 2.74 1.62 1.75
MSPE Estimation 18.25 20.72 11.14 11.29
MSPE Prediction 13.29 14.95 6.41 7.50
Segment SPF

MAD Estimation 2.00 2.01 1.77 1.87
MAD Prediction 1.52 1.58 1.30 1.47
MSPE Estimation 8.28 9.13 7.55 7.62
MSPE Prediction 4.00 4.48 3.51 3.74

14



Table 3 shows the coefficient estimates for the intersection SPFs using population as a predictor.
Coefficients for all models are provided in the Appendix I. The first row in each table cell is the
coefficient, the second row is the p-significance, and coefficients shown in bold are statistically
significant with 95% confidence. With respect to the six cluster-based functions, the number of
intersections (exposure surrogate for intersection SPFs) was not statistically significant in the
cluster 2, 3 and 4 functions. The effect of total population on number of intersection crashes is
shown to be positive in all functions (as expected), except for clusters 5 and 6, in which it was not
statistically significant. The amount of retail employment is positively associated with the number
of intersection crashes in cluster 4, 5 and 6 functions. The amount of non-retail employment is
positively associated with the number of intersection crashes in cluster 1, 2 and 6 functions. The
number of intersection crashes decreases with the increase of average household income in the
first five cluster functions, but increases in the cluster 6 function.

Table 3 Coefficient Estimates for KAB Intersection Crashes

Variables Coefficient Estimates by Cluster
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 12 3 4 5 6
Intercept -1.275  0.270  -0.150 -0.984 -2.688 -4.908

Population (*1000) 0161 0282 0360 0372 0054 0.129
S (0.014)___(0.000)___(0.000) _(0.000) __(0.368) _ (0.145)
Retail employment (*1000) 0.196 -0.295 -0.221 0.462 0.845  0.992

Non-retail employment (*1000) 0.090 0.182 0.121 -0.003 -0.064 0.174

Average household income -0.005 -0.013 -0.010 -0.002 -0.003 0.002
(*1000 (0.067) _(0.000) _(0.000) _(0.240) _(0.009) _(0.001)
Over dispersion 0.258 0.280 0422 0616 0.357 0.227

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are
statistically significant at 5% level of significance.

Table 4 shows the coefficient estimates for the segment SPFs. Similar to the intersection SPFs, the
association between the exposure surrogate, i.e. local roadway length and the number of segment
crashes, is positive in all six functions, but is only statistically significant in clusters 1, 5 and 6.
The coefficient for population is positive and significant in all six cluster-based functions. The
retail employment is statistically significant in clusters 3, 4 and 5, and the non-retail employment
is statistically significant in clusters 1, 2 and 3. The number of segment crashes decreases with the
increase of average household income in the first five cluster functions, but increases in cluster 6
function, which is consistent with the intersection SPFs.
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Table 4 Coefficient Estimates for KAB Segment Crashes

Variables Coefficient Estimates by Cluster
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 2 3 4 5 6
Intercept -3.648 -1.769 -1.300 -1.621 -5.429 -5.946

Average household income -0.003 -0.012 -0.012 -0.003 -0.002 0.001
(k0000 (0.327) (0.001)  (0.000) (0.027) (0.009) (0.015)
Over dispersion 0.263 0.178 0.264  0.338 0.381 0.175

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are
statistically significant at 5% level of significance.
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EXAMPLE NETWORK SCREENING APPLICATIONS

As an application exercise, we carried out two screenings using the cluster-based SPFs to predict
expected annual crashes and analyze safety in the towns of Stamford and Groton. These towns
were chosen because each includes TAZs representing all six clusters, and thus permit application
of all six cluster-based SPFs. Here we predicted the number of crashes using the cluster-based
SPFs, and estimated the expected number of crashes if no countermeasure had been implemented
in the future using the Empirical Bayes (EB) method as prescribed in the HSM (7). The EB method
increases the precision of predictions for the future when only limited historical crash data are
available, and it corrects for the regression-to-mean bias (30). Details about our procedures for
applying the EB method and developing the network screening application tool are provided in the
Appendix A and Appendix D.

Figure 5 shows the screening analysis results for Groton. Figure 5(a) and 5(c) show the cluster
type for each TAZ and the number of observed intersection and segment crashes in each TAZ,
respectively. Note there are some decimal observed crashes shown in Figure 5(a) and 5(¢). This is
because when we allocated crashes, if the crash occurred at the boundary of more than one TAZ,
it was evenly allocated among the TAZs. The areas with higher land-use intensities and high
population density are mainly located in the western parts of the town where the US submarine
base and CBD are located. The areas with lower land-use intensities and lower population density
are primarily located in the north central parts of the town. The number of observed crashes for all
TAZs in Groton is very low. Figure 5(b) and 5(d) respectively show the expected number of
intersection and segment crashes. It is clear that the expected crash distribution is quite different
from the observed distribution, which indicates the importance of using the EB method to avoid
making decisions on the basis of spurious crash count observations.

Figure 6 shows the results of the network screening for Stamford. The areas with higher land-use
intensities and higher population density are mainly located in the southern parts of the town. The
TAZs with higher number of observed intersection and segment crashes are mainly located in the
southern and middle parts, and the TAZs with higher number of expected intersection and segment
crashes are mainly located in the middle and northern parts of the town. Again, the expected crash
distribution is quite different from the observed distribution.
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Figure 5 Example Network Screening Application — Groton
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Figure 6 Example Network Screening Application — Stamford
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CONCLUSIONS AND FUTURE RESEARCH

This study demonstrates an alternative in predicting the number of crashes on local roads where
the traffic volumes are not available. Both the intersection SPFs and segment SPFs were estimated
at the TAZ level. The TAZs were categorized into six clusters based on land cover intensities and
population density, using the K-means clustering approach. Cluster-based SPFs were estimated
for predicting local road intersection and segment crash counts using, respectively, the number of
intersections and the total local roadway length. Demographic variables such as population, retail
and non-retail employment, total households, and average household income were used as
covariates to predict the crash counts.

Due to the high correlation between population and the number of households, two cluster-based
SPFs including either population or the number of households were estimated for both intersection
and segment crashes. Additionally, an aggregate function using the entire dataset was also
developed for comparison. Based on the goodness-of-fit (AIC and BIC values) and prediction
performances (MAD and MSPE values), the cluster-based SPFs outperform the aggregate SPFs.
The cluster-based SPFs with population perform better than those with the number of households
for both intersection and segment crashes.

Finally, the cluster-based SPFs were applied to the towns of Stamford and Groton as a network
screening tool. In Groton, the TAZs with higher number of expected intersection and segment
crashes are mainly located in the middle and northern parts of the town. In Stamford, the TAZs
with higher number of expected intersection and segment crashes are mainly located in the middle
and northern parts of the town. It is anticipated that the example applications can help local
agencies develop cost-effective countermeasures to improve safety for local roads by identifying
the areas of town in which to focus safety improvement projects.

This study has demonstrated an initial exploration into developing TAZ level SPFs using
demographic variables for local roads when the traffic volumes are not available, by clustering
TAZs into different types to account for the data heterogeneity. These cluster based TAZ level
SPFs can be used to predict the average annual intersection and segment crashes in a TAZ in the
context of HSM analyses. They also might be used to help agencies evaluate alternative options
for roadway network and economic development. However, it is likely to be more difficult to
transfer these models to other jurisdictions compared with facility level SPFs (e.g. roadway
segment and intersection). These TAZ level SPFs are highly dependent upon not only the
clustering of the TAZs, but also the definitions of the TAZs themselves, as well as the character
of land development. The relationship between these factors and crash occurrence is likely to vary
much more from one place to another than would the relationship between road characteristics and
traffic volume. As a consequence, attempts to calibrate these models to another State are not likely
to be successful. To use the cluster based TAZ level SPFs, we recommend users to collect their
own data and estimate the SPFs following the procedure documented in the Appendix A.

One significant challenge in conducting this study was to geo-locate crashes on local roads, as the
Connecticut crash data set included only route and milepost at the time of data collection. Having
geocoded crash records would substantially simplify the process. Other relevant variables (e.g. trip
distance and trip duration for a TAZ) that were not available when conducting this study may also
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affect the roadway safety, as the crash counts are expected to increase with the increase of trip
distance and duration in a TAZ. It is recommended future research focus on collecting these
variables in TAZ level, and then estimates the new SPFs to improve the prediction accuracy.
Additionally, crash counts might vary from TAZs with small geographical size to large ones. Some
analysts might want to investigate crash rates by TAZ area for a normalized comparison. The
process to calculate crash rates is provided in Appendix E.
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Appendix A Data Collection, Compilation and Analysis
Procedures

Figure A-1 presents a flow chart of the process of collecting, compiling and analyzing the data for
the project. The Roman numerals and capital letters indicate the sections of this Appendix where
each section is covered in detail.

* A. Collect intersection and segment crash records
* B. Collect TAZ level demographic records

|. Data * C. Collect TAZ level land cover intensities
o0 it * D. Collect roadway network features

* A. Separate TAZs into homogenous clusters using K-means

I1. Clustering clustering analysis

Analysis

Assignment

+ A. Estimate cluster based prediction model for intersection crashes

MRS ENIEE - B. Estimate cluster based prediction model for segment crashes

Prediction
Models

* A. Use EB method to predict intersection crashes
V. EB * B. Use EB method to predict segment crashes

* A. Assign intersection crashes to TAZ
ill.crash N B. Assign segment crashes to TAZ

Predictions

Figure A-1. Data Collection, Compilation and Analysis Flow Chart
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I DATA COLLECTION
LA Collect Intersection and Segment Crash Records

Intersection and segment crash data were collected from the Connecticut Crash Data Repository
(CTCDR) http://www.ctcrash.uconn.edu/. As more severe crashes lead to more serious
consequence, and generate more interest (particularly among the members of the steering
committee for this project), only the type K (fatal injury), A (incapacitating injury) and B (non-
incapacitating injury) crashes occurring on any roads under local jurisdiction in Connecticut from
2010 to 2012 were considered. In total, 5403 intersection crashes and 5347 segment crashes were
extracted and used in estimating the crash prediction models. The intersection crash data includes
road name and intersection name; the segment crash data includes road name, milepost and the
nearest intersection name.

I.B Collect TAZ Level Demographic Records

TAZ level demographic data includes population, retail and non-retail employment, households,
vehicles and household income. All of these variables are summarized by TAZ, and are used as
the independent variables in crash prediction models. The demographic variables were collected
from the Census Transportation Planning Package Database (CTPP 2010). 1806 TAZs were
defined for the state of Connecticut in 2010. Two of these TAZs were apparently defined to
represent special generators, and have no population or employment, so they were eliminated from
the analysis and the remaining 1804 TAZs were used to estimate the crash prediction models.

I.C Collect TAZ Level Land Cover Intensities

Land cover data was acquired from the 2011 National Land Cover Database (Jin et al. 2013),
which classifies each pixel in a Landsat image acquired at a spatial resolution of 30 meters into
one of eighteen land-cover categories. Three land-cover classes were of interest: a) low intensity
developed — single family housing, less than 50% impervious surface; b) medium intensity
developed — single-family housing, between 50-80% impervious surface; and c) high intensity
developed — apartment complexes, commercial and industrial areas, greater than 80% impervious
surface. Land cover intensities were determined for all three land-cover classes by calculating
their areal percentages within each TAZ.

I.D Collect Roadway Network Features

The 2010 TIGER/Line shapefiles for Connecticut were extracted from the United States Census
Bureau (U.S. Census Bureau 2012). All roads not under local jurisdiction were removed to produce
a new file consisting of city streets, neighborhood roads, and rural roads (MTFCC code = S1400).
TIGER/Line shapefiles contain both spatial and attribute errors — for example, incorrect or missing
roadway names, inaccurate spatial location of roadway features, missing roadways. Major errors
were manually identified and edited for each town using ArcGIS 10 (ESRI 2010). Corrections
included re-aligning roadway features (e.g., extending roadways that should intersect but did not),
adding missing roadway names, adjusting mislabeled roadway names (i.e., roadways with
incorrect names), and editing roadway names to ensure consistency (e.g., 7" Street and Seventh
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Street — 7™ Street). The final editing step merged roadway line segments that shared coincident
endpoints and roadway name to produce a single roadway feature for each roadway under local
jurisdiction.

Two roadway attributes were determined using the resulting shapefile: number of intersections
and total length of roadways under local jurisdiction for each TAZ. Only named roadways were
considered when calculating total length, as unnamed roadways included private driveways and
private roads for which crash records would not be available. First, the roadway and TAZ
shapefiles were overlaid using an intersect operation to split roadway features at TAZ boundaries.
This ensured only the length of the roadway segment falling within the TAZ boundary, and not
the entire length of the roadway feature, was included in the summation. Unfortunately, the
intersection operation also created duplicate line segments for all roadways that fell along the
border of two TAZs (e.g., roadway A intersected with TAZ 1 and roadway A intersected with TAZ
2). These roadways were identified using a spatial selection operation (i.e., select all roadway
features that share a line segment with TAZ features). A new field was added to the attribute table
such that all selected roadway features were assigned a value of 2. This field was used to divide
the length of the shared roadways in half in order to proportionally allocate the roadway feature’s
length among the two TAZs. The final step entailed summarizing the total length of roadways by
TAZ.

Two intersection attributes were calculated for each TAZ: number of intersections when
considering named roadways only and number of intersections when considering both named and
unnamed roadways. The processing steps were the same in both calculations — only the selected
roadway features differed (named roadways vs. all roadways). First, the roadway shape file was
intersected with itself. This created a point feature at each location where one roadway feature
intersected a second roadway feature. Unfortunately, this created multiple points at each
intersection (e.g., A intersected with B and B intersected with A). To remove the duplicate
intersections, the x y coordinates of each point were added to the intersection attribute table. A
dissolve operation was then run to remove all duplicate points (i.e., points that shared the same
coordinate pair). As noted above, roadways often fell along the boundary of TAZs, which meant
that multiple intersections were also located on the boundary of two or more TAZs. An additional
processing step was needed to proportionally allocate intersections among TAZs. A spatial join
operation was used to join TAZs to each intersection. For intersections falling along the border of
two or more TAZs, the spatial join operation records the number of TAZs connected to each
intersection. The resulting field was used to proportionally allocate each intersection (e.g., if spatial
join returned a value of 3, the intersection was assigned a value of ’5). The final step entailed
summarizing the total number of intersections found within each TAZ.
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Il CLUSTERING ANALYSIS

I1.LA Separate TAZs into Homogenous Clusters

K-means clustering analysis, sometimes referred to as portioning-based or objective function-
based clustering approach, defines an objective distance function (e.g. Euclidean distance or
Canberra distance), and categorizes the data by optimizing this objective function (STATA 2011).
To select the optimum number of clusters in K-means clustering analysis, different numbers of
clusters should be respectively tested, and the Calinski and Harabase pseudo-F index (Calinski and
Harabase 1974) are used to determine the final number of clusters. The larger the Calinski and
Harabase pseudo-F index, the more accurate is the clustering analysis. Figure A-2 shows that the
optimum number of clusters was found to be six as this number achieved the highest value (2464)
of the Calinski and Harabase pseudo-F index. Table II.1 describes the distribution interval of four
variables - low intensity, moderate intensity, high intensity and population density in each cluster

type.
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Figure A-2 K-mean Clustering Analysis Evaluation

Table A.1 Interval Values of Each Clustering Variable by Cluster
Cluster 1 Cluster 2 Cluster 3 Cluster 4  Cluster5 Cluster 6

Low Intensity (%) [0,248]  [1.7,29.0] [8.6,48.1] [194,61.7] [6.8,33.1] [0, 14.0]
Moderate Intensity (%) [20.4,57.9] [41.5,802] [25.9,59.4] [4.5,354] [0.5,26.8] [0,11.2]
High Intensity (%) [27.1,76.1] [0.9,343] [0,28.1]  [0,22.3]  [0,26.3] [0, 15.9]
Population Density (per km?) [0,14.2]  [0.1,10.0] [0, 7.1] [0.1,3.5]  [0,3.1]  [0,0.8]
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111 CRASH ASSIGNMENT

I11.A Assign Intersection Crashes to TAZ

1. Roadway | Insert the roadway network features

Network
Features

a * Insert the intersection crash records
Intersection
Crash

Records

Find the longitude and latitude for each intersection-related crash

3. Longitude

and Latitude

—— S

4. Locate
Crashes

5. Assign
Crashes

~N
* Locate intersection crashes to the road layer

_J

)
* Assign intersection crashes to TAZ

J
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I11.B Insert the Roadway Network Features

See Section I.D

I11.C Insert the Intersection Crash Records

See Section LA

111.D Find the Longitude and Latitude for each Intersection-Related Crash

For the intersection crashes, an approximation of the longitude and latitude was achieved by
inputting the road name, intersection name, town name and State for those crashes (e.g. North
Eagleville Road and Bone Mill Road, Mansfield, CT) in Google Map API
http://www.gpsvisualizer.com/geocoder/. Crashes whose longitude and latitude could not be
automatically identified from the Google Map API were manually identified using Google Earth.
Google Earth reports longitude and latitude based on the World Geodetic System of 1984
(WGS84) datum.

I11.E Locate Intersection Crashes to the Road Layer

The resulting table of intersection crashes was added to ArcGIS using the longitude and latitude
coordinates. This produced a new point feature shapefile, where each point represented a unique
intersection crash. The intersection crash shapefile was re-projected to match the spatial reference
system associated with the roadway and TAZ shapefiles (State Plane Coordinate System using the
North American Datum of 1983). All geospatial data have some degree of positional inaccuracy
(location of the geographic feature in a database compared to its true location on the surface of the
earth). This is true for both the roadway features in the TIGER/Line shapefile and the roadway
features in Google Maps. This meant that not all intersection crashes geocoded using the Google
Map API occurred at the intersection of two roadway features when the intersection crash shapefile
was overlaid on the TIGER/Line shapefile. To ensure all intersection crashes were located at the
intersection of two roadway features, the intersection crash shapefile was edited such that all
intersection crash points were moved to the nearest roadway feature endpoint using a snap editing
tool. Most intersection crash points that required editing were moved less than 100 feet. Finally,
we randomly selected a few intersection crashes, and check their locations on the TIGER/Line
shapefile with the locations shown in crash data to verify the process of locating crashes is
accurate.

IILLE.1 Assign Intersection Crashes to TAZ

Similar to the calculation of the number of intersections per TAZ, the number of intersection
crashes per TAZ necessitated an additional processing step to proportionally allocate intersection
crashes that were located on the boundary of two or more TAZs. A spatial join operation was used
to join TAZs to each intersection crash, which resulted in a count of the number of TAZs associated
with each crash point. If an intersection crash occurred completely within a TAZ, the spatial join
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returned a value of 1. If an intersection crash occurred on boundary of two or more TAZs, the
spatial join returned a value of 2 (or 3 or 4). The resulting spatial join count field was used to
proportionally allocate each intersection crash (e.g., a value of 2 means the intersection crash was
assigned a value of 2 and the intersection crash was divided between the two associated TAZs).
The final step entailed summarizing the total number of intersection crashes within each TAZ.

IILLE.2 Assign Segment-related Crashes to TAZ

N
1. Roadway [ Insert the CT roadway network features
Network
Features J
N
2. Segment [N Insert the segment crash records
Crash
Records J
~N
* Locate segment crashes to road
3. Locate
Crashes )
\
.  Assign segment crahses to TAZ
4. Assign
Crashes )

IIL.E.3 Insert the Roadway Network Features
See Section to I.D.

IIL.LE.4 Insert the Segment Crash Records

See Section LA.

IILE.5 Locate Segment Crashes to Road
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IIL.E.5.1 Associating Roadway Features with TAZs

In order to assign each segment crash to an individual TAZ, the individual roadway features (i.e.,
segments along which the crash occurred) must be associated with TAZ(s). The shapefile created
by intersecting roadway features and TAZ features (see section [.D.) served as the base file for this
process. Within this file, all roadway features that intersect multiple TAZs are split into two line
segments at the boundary of the TAZs, and multiple line segments are created for roadway features
that fall along the boundary of two TAZs (i.e., one line segment for each TAZ). The line segments
within the intersected shapefile contain both roadway attribute information and TAZ attribute
information. Two merge operations were performed using the roadway feature identification (FID)
number, TAZ feature identification (FID) number, and roadway name. First, a merge was
performed to combine all roadway features that shared the same roadway FID and TAZ FID. This
created a single line feature for all roadways that had a segment completely within a TAZ and a
segment along the border of the TAZ. Second, a merge was performed to combine all roadway
features that shared coincident endpoints, roadway name, and TAZ FID. This created a single line
feature representing a unique roadway within each TAZ. The attribute table of resulting merged
shapefile was exported for use in Microsoft Excel.

As previously noted, several roadways under local jurisdiction occur along the boundary of two or
more TAZs. For crashes occurring on these segments, proportional allocation was used to assign
crashes to each TAZ (e.g., if the crash occurred on a roadway that bordered two TAZs, each TAZ
was assigned '2 of the crash). To identify roadways occurring along multiple TAZs, a
consolidation procedure was performed. First, a new column was created in the database by
concatenating the roadway FID number with the roadway name. This was done to ensure that
roadways that shared the same name but had different FID numbers were treated as individual
roadways (e.g., there were several roadway features named Main Street across the state). The
consolidation procedure was performed to count the number of TAZs associated with each unique
roadway name and FID combination. Approximately 85% of all roadways under local jurisdiction
were associated with a single TAZ, while the remaining 15% were associated with two or more
TAZs.

IIL.E.5.2 Assigning Segment Crashes to Roads

For segment crashes occurring on roadways associated with a single TAZ, the crash was assigned
to that TAZ. For segment crashes occurring on roadways associated with multiple TAZs, the
procedure described below was used to create a point feature shapefile that correctly located each
segment crash along the length of the roadway in order to identify the TAZs associated with the
crash for proportional allocation.

First, we built a route layer for the Connecticut roadway network features, using the command
‘Create Routes’ under the ‘Linear Referencing Tools’ of ArcGIS. Then we inserted the crash data,
and located all crashes that occurred in the roads associated with more than one TAZ to the route
layer using the command ‘Make Route Event Layer’ under the ‘Linear Reference Tools’ of
ArcGIS, based on the information of roadway name and milepost.
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Next, it was necessary to translate the crash location from route and milepost to a geolocation on
a segment. Because we did not know which end of the road corresponded to milepost “0”, we used
the following steps to do this:

1.

2.

Add a buffer with 0.3-mile radius to each crash that occurred on a road associated with more
than one TAZ, using the command ‘Buffer’ under the ‘Analysis Tools’ of ArcGIS.

Use the command ‘Spatial Join’ under the ‘Analysis Tools’ to find all roads that the buffer
intersects with.

Compare the road name of the nearest intersection for each crash with all the roads that the
buffer of the crash intersects with.

Select all observations where the name of the nearest intersection matches none of the roads
with which the buffer intersects.

In the crash records, recalculate the new mileposts of all selected crashes in last step. The new
milepost of each crash was calculated as the total length of the roadway where the crash
occurred minus the original milepost of the crash.

Locate all segment crashes to the route layer with the updated segment-related crash records,
using the command ‘Make Route Event Layer’ under the ‘Linear Reference Tools’ of ArcGIS,
based on the information of roadway name and milepost.

We randomly selected a few segment crashes, and check their locations on the TIGER/Line
shapefile with the locations shown in crash records to verify the process of locating crashes is
accurate.

IILLE.6 Assign Segment Crashes to TAZ

See Section I11.A.5.
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IV CRASH PREDICTION MODELS

IV.A Estimate Cluster Based Prediction Model for Intersection Crashes
Details are provided in the Final Report.

IV.B Estimate Cluster Based Prediction Model for Segment Crashes
Details are provided in the Final Report.

V EB PREDICTIONS

In order to properly evaluate the safety of any roadway location, it is necessary to estimate the
long run expected crash count before comparing it with other locations. This is because any crash
count is just a single observation, and is not necessarily the average or expected count at the
location. For example, a location with a high crash count could in the next year observe a much
smaller crash count, or vice versa, just due to random fluctuations in crash counts from year to
year. This phenomenon is known as “Regression to the mean (RTM)”, and failing to account for
it could lead to serious bias in the estimates and corresponding analysis errors.

To avoid RTM bias, the Empirical Bayesian (EB) prediction method was used, because instead
just predicting the crash counts for a location using the crash prediction models, or only referring
to the observed crash counts for the location, the EB method uses Bayesian statistics to estimate
the long run expected crash counts by combining the predicted crashes from crash prediction
models with the observed crash counts. It significantly increases the precision of predictions for
the future when only limited historical crash data is available, and it corrects the RTM bias (Hauer
et al. 2002). To apply the EB method, we calculated the predicted number of crashes using the
cluster-based models, and then estimated the expected number of crashes using the Empirical
Bayesian (EB) method as prescribed in the HSM (HSM, 2010), as follows:

V.A Use EB Method to Predict Expected Intersection Crashes

Equation V.1 and V.2 are used directly to estimate the expected intersection crash frequency for a
TAZ by combining the predicted crash counts with the observed crash counts.

Ni,expected,int = Wiint X Ni,predicted,int + (1 - Wi,int) X Ni,observed,int (V'l)
1
W. . = V.2
Lint 1+ki,intx(2all study years Ni,predicted,int) ( )
Where
Niexpecteaint =  estimate of expected intersection crash frequency for the study period in
TAZ i
N; predicteaint =  estimate of predicted intersection crash frequency for the study period in
TAZ i
N; opserveda,int =  observed intersection crash frequency for the study period in TAZ i
Wi int = weighted adjustment for the EB intersection prediction in TAZ i
ki int = over-dispersion parameter in the intersection crash prediction model for
TAZ i
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V.B Use EB Method to Predict Expected Segment Crashes

Equation V.3 and V.4 are used directly to estimate the expected segment crash frequency for a
TAZ by combining the predicted crash counts with the observed crash counts.

Ni,expected,seg = Wi,seg X Ni,predicted,seg + (1 - Wi,seg) X Ni,observed,seg (V-3)
1
w; = V.4
Lseg 1+kjsegX (Zall study years Ni,predicted,seg) ( )
Where
Niexpecteaseg =  estimate of expected segment crash frequency for the study period in TAZ
i
Nipredgictedseg =  estimate of predicted segment crash frequency for the study period in TAZ
i
Niobservedseg =  Observed segment crash frequency for the study period in TAZ i
Wi seg =  weighted adjustment for the EB segment prediction in TAZ i
kiseg = over-dispersion parameter in the segment crash prediction model for TAZ

1
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Appendix B Comprehensive SPF Estimation Results

This appendix presents the estimation results for the SPFs that were not selected for prediction.

Table B-2 Coefficient Estimates for KAB Intersection Crashes (Statewide SPFs)

Coefficient Estimates

, }/,aljl??l?f . Population  Households  Vehicles
-0.960 -1.096 -2.119
fnteret 0000) 00000 (0.000)
Log (number of intersections) 0.151 0.229 0.720
____________________________ 0.014) _____(0.000) _ (0.000)
o 0.448 NA NA
Fopdlafion (000 000 o )
Households (*1000) NA 0.986 NA
Ny (0.000) ~__ NA)_
Vehicles (*1000) NA NA 0.015
o Ny NA) - (0.799)
Retail employment (*1000) 0.097 0.017 0212
____________________________ 0365 (0874 ___ (0.101)
. - 0.010 -0.002 0.251
MNonetalemployment C4099)  os0n 083 (0000
. « 0.006 -0.006 -0.008
Average household income (199 w0 0.000)  (0.000)
Over dispersion 0918 0.964 1016
(0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold
coefficients are statistically significant at 5% level of significance. NA means the
variable is not applicable in the model.
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Table B-3 Coefficient Estimates for KAB Intersection Crashes (Cluster-based SPFs Using
Households)

Variables Coefficient Estimates by Cluster
1 2 3 4 5 6
Intercept 1169 0085 -0239 -1273 -2532 -4.882

Over dispersion 0.231 0.306 0.460 0.657 0.355 0.222

0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are statistically
significant at 5% level of significance.
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Table B-4 Coefficient Estimates for KAB Intersection Crashes (Cluster-based SPFs Using
Vehicles)

Variables Coefficient Estimates by Cluster
1 2 3 4 5 6
Intercept 1310 0388  -0426 -1590 -2487 -4.873

Over dispersion 0.275 0.338 0.510 0.677 0.356 0.224

0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are statistically
significant at 5% level of significance.
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Table B-5 Coefficient Estimates for KAB Segment Crashes (Statewide SPFs)

Coefficient Estimates

_ }/?_rl?k_)l_ei . ______________Population  Households _ Vehicles
Intercept -1.521 -1.705 -0.552
____________________________ 0.000) ______(0.000) ____(0.139)
Log (roadway length in miles) 0.082 0.109 0.002
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0.022) __ (0.0049)  (0.960)

. 0.329 NA NA
Fopulation (1000 oy w )
Households (*1000) NA 0.811 NA
NN (0.000) _____ (NA)__
Vehicles (*1000) NA NA 0.424
o Ny NA)______(0.001)
. . 0.178 0.114 0.197
Realemployment (00 0039 0195 (0015)
. 0.083 0.084 0.098
MNonretallemployment (090 ooy 0000 (0000
Average household income (*1000) 0.001 -0.001 0.002
,,,,,,,,,,,,,,,,,,,,,,,,,,,, 0025 (0144 ___ (0.000)
Over dispersion 0319 0.374 0.412
(0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold
coefficients are statistically significant at 5% level of significance. NA means the
variable is not applicable in the model.




Table B-6 Coefficient Estimates for KAB Segment Crashes (Cluster-based SPFs Using
Households)

Variables Coefficient Estimates by Cluster
1 2 3 4 5 6
Intercept 3199 -3.038 2041 2658 -4379 -6516

Over dispersion 0.213 0.226 0.302 0.367 0.395 0.196

0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are statistically
significant at 5% level of significance.
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Table B-7 Coefficient Estimates for KAB Segment Crashes (Cluster-based SPFs Using
Vehicles)

Variables Coefficient Estimates by Cluster
1 2 3 4 5 6
Intercept 3710 4292 2229  -4361 5273 6372

Over dispersion 0.289 0.205 0.313 0.395 0.406 0.192

(0.000)  (0.000) (0.000) (0.000) (0.000) (0.000)

Notes: first row is the coefficient, second row is the p-significance, and bold coefficients are statistically
significant at 5% level of significance.
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Figure B-7 The Two TAZs Without Population Eliminated from SPF Estimations
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Appendix C List of Data Sets Used for Analysis

The following data that were used for the project are archived and available on request from the
project team.

1. Roadway Network Shape Features
1.1. 2010 TIGER/Line Roadway Shapefile
1.2. Names of Roadway Under Local Jurisdiction
1.3. 2010 TAZ Boundary Shapefile
1.4. 2010 TAZ Size

2. TAZ Level Demographic Records
2.1. Raw Data
2.1.1. Household Income Data
2.1.2. Retail and Non-Retail Employment Data
2.1.3. Population Projection Data
2.1.4. Vehicle Ownership Data
2.2. Processed Data

3. TAZ Level Land Cover Features
3.1. 2011 National Land Cover Features for CT
3.2. Land Cover Intensities

4. Crash Records
4.1. Intersection Crash Records from Connecticut Crash Data Repository
4.2. Segment Crash Records from Connecticut Crash Data Repository

5. Crash Location Shapefile
5.1. Intersection Crash Location Shapefile
5.2. Segment Crash Location Shapefile

6. Assembled TAZ Level Data for Model Estimation and Expected Crash Data for
Application Tool
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Appendix D Instructions for Use of Visualization Tool

This Appendix outlines how to visualize the results of the crash prediction model by TAZ and lists
the steps needed to update variables utilized by the crash prediction models — particularly crash
counts, roadway features, land cover intensities, and demographic data. The Appendix assumes
the user has previously used and has a basic understanding of the ArcGIS software package.

Requirements: ArcGIS 10 or higher, including a license for the Spatial Analyst extension
Datasets: CCTRP14 01 GIS.zip

Part 1. Visualizing model results.

a. Add the map document CrashModelResults.mxd to ArcMap (File — Open). The map
document contains:
= TAZ2010.shp: shapefile detailing the 2010 Traffic Analysis Zones for Connecticut
= Intersection Crash.xls: Excel file containing the data for the prediction model for
intersection crashes
=  Segment Crash.xls: Excel file containing the data for the prediction model for
segment crashes

b. To view model results for the prediction model for intersection crashes, first join the
Intersection Crash table to the TAZ2010 attribute table. Right-click on TAZ2010 in the
Table of Contents window and select Joins and Relates — Join.

CrashModelResulf

File Edit View Bookmarks Insert Selection Geoprocessing Custornize  Windows He

DR Ea B " & - | 1608537 - EEE B
HAAMOIx W - K@ BIIA S L NetworkAr
Table Of Contents 1 x
%[0S 8 E
5 2 Layers
= £ C\Users\amy\Desktop\CCTRP14_01_G]

= M
O B Copy

0 B3 ChUser X Remove

B Tt B Open Attribute Table
= 'Se_|

Joins and Relates 2 Join...

v

£ Zoom To Layer Remove Join(s) 3

Relate...

~

Visible Scale Range 3 Remove Relate(s) »

Use Symbol Levels ‘I \{_(‘j/‘

Specify GEOIDI10 as the join field for the TAZ2010 shapefile, select the Intersection Crash
Excel file as the table to join, and specify TAZ ID as the join field for the Intersection
Crash Excel file. Click OK.
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C.

| Join Data &Iﬂ_ﬁr

Join lets you append additional data to this layer's attribute table so you can,
for example, symbolize the layer's features using this data.

What do you want to join to this layer?

Join atiributes from a table -

1. Choose the field in this layer that the join will be based on:

GEQID10 -

2. Choose the table to join to this layer, or load the table from disk:

| Intersection CrashS' j

Show the attribute tables of layers in this list

3. Choose the field in the table to base the join on:
-

Join Options
(@ Keep all records

All records in the target table are shown in the resulting table.
Unmatched records will contain null values for all fields being
appended into the target table from the join table.

“) Keep only matching records

If a record in the target table doesn't have a match in the join
table, that record is removed from the resulting target table.

o) e

The annual number of expected KAB intersection crashes as estimated using the empirical
Bayes method corresponds to the field IntCrsh KAB Expected. To visualize this variable
by TAZ, right-click on the TAZ2010 shapefile name in the Table of Contents window and
select Properties to open the Layer Properties window. Under the Symbology tab, specify
IntCrsh KAB Expected as the field to map (select Quantities within the Show window
and IntCrsh. KAB_Expected as the Value field).
=  You can control the classification scheme (i.e., number of classes, classification
break values) by clicking on the Classify button.
* You can control the color scheme by selecting a pre-defined color ramp from the
drop-down menu or by double-clicking on each individual symbol box to manually
set the color corresponding to each class.
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~
Layer Properties @I&J
General | Source | Selection I Displayl Symbology |Fidds I Definition Guery | Labels I Joins & Relatesl Time I HTML Popupl
Show:
Feat Draw quantities using color to show values.
Categories Fields Classffication
Quantities WValue IntCrsh_KAB_Expected - Natural Breaks (Jenks)
i Graduated colors -
... Graduated symbols Normalization: none - Classes: 5 Classify
Proportional symbols
£ Det densty Color Ramp: . -
Charts
Multiple Attributes Symbol  Range Label
[ 007561 - 0.359927 0.007561 - 0.353927
[ |o3s9928-0.790370 0.359928 - 0790370
I 0.750371 - 1.630756 0.790371 - 1.630756
I 1 530757 - 3.378321 1.630757 - 3.378321
= | [ 373322 - 5741511 3378322 - 5741511
| |
[] Show class ranges using feature values
oK | [ Cancel | [ Apply |

d. To view model results for the prediction model for segment crashes, follow the steps above
replacing the Intersection Crash Excel file with the Segment Crash Excel file.
= Note: Prior to joining the Segment Crash table to the TAZ2010 attribute table, it is
recommended that you first remove the join to the Intersection Crash Excel file.
Right-click on TAZ2010 in the Table of Contents window, select Joins and Relates
— Remove Join(s), and select ‘Intersection Crash$’.

The TAZ2010 attribute table contains the field TownName, which identifies the town
corresponding to each TAZ. If you are interested in visualizing modeling results for a
single town or a subset of towns, use the Select by Attributes tool (Selection — Select by
Attributes) to select your town(s) of interest using the field TownName.

Select By Attributes

o

——

(2 [

Layer

Method:

[ Taz2010
[~ Only show selectable |

ayers in this list

[Creale a new selection

"TAZ2010.Area_sgkm”
"TAZ2010. TownName" i
|| | "intersection Crashs TAZ_ID" [
"Irtersection Crashs". Town_ID"

"Irtersection Crash$' IntCrsh_KAB"

‘New Britain’

"New Canzan’
"New Fairfield” -
"New Hartford (u
‘New Haven'
"New London®

Go To
SELECT * FROM TAZ2010_'Intersection Crash$’ WHERE:
"TAZ2010.TownName" = -

Values

Ogar | [ Vey |[ Hep | [ Lead. ||

J [

Save... ]

[ ok

| [ sopy Cose |
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After the TAZs corresponding to the town(s) of interest are selected, right-click on
TAZ2010 in the Table of Contents window and select Selection — Create Layer from
Selected Features. This will create a new layer that contains only the TAZs corresponding
to the town(s) of interest.

CrashModelResulf

File Edit View Bookmarks Insert Selection Geoprocessing Customize Windows Help

ODREE L B8 x| 9 | d-| 16857 I EERE D ki
BEMQ|rers -0 k@ OB & 2§ Network Analyst- | ER
Table Of Contents rx
Ble 8 s
£ Layers
= [ CAUsers\amy\Desktop\CCTRP14_01_G
. %ﬂﬁwy

O B Ci\Usy X Remove
B INE]  Open Attribute Table
B 'S

Joins and Relates 3

@ Zoom To Layer

Visible Scale Range 3

Use Symbel Levels

Selection | #E  Zoom To Selected Features
Label Features M Pan To Selected Features
Edit Features » | [ Clear Selected Features
B Switch Selection
%o Convert Features to Graphics... [§ SelectAl
Convert Symbology to Representation.., Make This The Only Selectable Layer
Data 3 Copy Records For Selected Features
»  Save As Layer File...
@’ Creste Layer Package.. Create Layer From Selected Features ‘
e — B Open Table Showing Selected Features Dﬁ
T WV LA

= Note: To permanently save this new layer, right-click on the layer in the Table of
Contents window and select Data — Export Data. You can then save the layer as
a shapefile.

Part 2. Updating model variables.

This section details the processing steps required to update subsets of model variables.
Specifically, it provides the steps needed to update:

1.

2.

Crash data — update the number of observed KAB intersection or segment crashes for each
TAZ

Roadway data — update the number of intersections and total length of named roadways
under local jurisdiction for each TAZ

TAZ cluster memberships — update cluster membership numbers for each TAZ based on
an updated land cover map and/or updated population density demographic data
Demographic data — update TAZ-level demographic data

Note 1: Land-cover intensities were calculated using the 2011 National Land Cover Database. The
next update will correspond to the release of the 2016 National Land Cover Database. The 2011
National Land Cover Database was made available to the public in December 2013.
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Note 2: TAZ-level demographic data were collected from the 2010 Census. The next update will
correspond to the 2020 Census.

I.  Updating crash data
Note: The steps below assume that all crashes have longitude and latitude coordinates stored

in columns in a worksheet or database file (e.g., xlsx, .dbf, or .txt).

a. Add the updated crash database, stored as a .xIsx, .dbf or .txt file, to ArcMap by selecting
File — Add Data — Add XY data.

m Edit View Bookmarks Insert Selection Geoprocessing Customize Wi
4 New. CirlsN | - | 16035606 - =
E. Open... Ctrl+ O [y @ &2 m r‘z_b_‘ x@Y ; 1
Save Ctrl+5 |

Save As...

| Save A Copy... —|

[ AddDate v| 4 AddData.
EH SignIn... EE Add Basemap...
EE ArcGIS Online... EE Add Data From ArcGIS Online...
Page and Print Setup... |;+; Add XY Data...

| BB Print Preview... Geocoding 4
& Print... % Add Route Events...

| &l| Create Map Package... ;o Add Query Layer..

| Export Map... H

Select your updated crash database, set the X field to the column corresponding to the
longitude of each crash point, and set the Y field to the column corresponding to the latitude
of each crash point. Use the Edit button under the Coordinate System of Input Coordinates
to specify the correct geographic coordinate system corresponding to your longitude and
latitude values. For example, if your crash points were collected using the World Geodetic
System of 1984 (WGS84) datum, this should be displayed under Description. Click OK
to proceed.
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Add XY Data (-2 [

A table containing X and ¥ coordinate data can be added to the
map as a layer

Choose a table from the map or browse for another table:

[ Sheetls =]

Specify the fields for the X, ¥ and Z coordinates:

¥ Field: longitude -
¥ Field: latitude -
Z Field: <Mone = -

Coordinate System of Input Coordinates

Description:

Geographic Coordinate System: -
Mame: GCS_WGS_1984

Fl [}

[T show Details

Warn me if the resulting layer will have restricted functionality

[ ok | lCanceI‘lJ

(% v =

A point event layer will be added to ArcMap. To permanently save your updated crash
points in a new shapefile, right-click on the layer name in the Table of Contents window
and select Data — Export Data.

All data layers must have the same projected coordinate system prior to data analysis. If
the coordinate system associated with the newly created crash shapefile does not match the
coordinate system associated with the TAZ and roadway shapefiles (State Plane Coordinate
System for CT based on the North American Datum of 1983) or uses a geographic
coordinate system solely, the crash point shapefile must be projected. Open ArcToolbox
and select Data Management — Projection and Transformations — Feature — Project.



“ Project B|E]|Z|

Input Dakaset or Feature Class

I IntersectionCrashes_KAB_wgsSd l] [,:_.’-';.

Input Coordinate Swstem (optional)

Cutput Dataset or Feature Class

| CATEMPY\IntersectionCrashes_KAB.shp | E}
Cutput Coordinate System
| WAD_1983_StatePlane_Connecticut_FIPS_0600 |

Geographic Transformation foptional)

WGS_1984_(ITRFOO)_To_MAD_1983

e b [x 1 |

[ OF, ] [ Cancel ] [Environments... ] ’ Show Help == ]

Select the updated crash point shapefile as the Input Dataset. Click the button (E)
adjacent to the Output Coordinate System field to open the Spatial Reference Properties
window. Click the Import button to import the projected coordinate system associated with
the TAZ shapefile. This operation will ensure that the projected coordinate system
associated with the crash point shapefile will exactly match the projected coordinate system
associated with the TAZ shapefile. Click OK twice to proceed.



F B
Spatial Reference Properties M
X¥ Coordinate System | Z Coordinate System

Mame: NAD_1983_StatePlane_Connecticut_FIPS_0&00

Details:

»

Projection: Lambert_Conformal_Conic
False_Easting: 304800.609600 Tl
False_Morthing: 152400,304300
Central_Meridian: -72, 750000

L Standard_Parallel_1: 41,200000
Standard_Parallel_2: 41.866667
Latitude_Of_Origin: 40.833333

Linear Unit: Meter {1.000000)

m

Geographic Coordinate System: GCS_Morth_American_1983
| Angular Unit: Degree (0.017453292519943295)
Prime Meridian; Greenwich (0.000000000000000000)

Datum: D_Morth_American_1983 =
Select... Select a predefined coordinate system,
Import & coordinate system and ¥/, Z and M
Import... domains from an existing geodataset (e.g.,

feature dataset, feature dass, raster).

Create a new coordinate system.

Edit the properties of the currently selected

focif coordinate system.

Clear Sets the coordinate system to Unknown,

Save As... Save the coordinate system to a
file.

’ oK H Cancel H Apply ]

A new projected crash point shapefile is created.

c. In most cases, the crash points will not overlay exactly onto the roadway line features due
to positional error in both datasets. This can be corrected using the Snap tool: ArcToolbox

— Editing Tools — Snap.
r“\ Snap Elﬂlﬂj

-

Input Features

|IntersectionCrashes_KAB LI @
Snap Environment
= &

Features Type Distance
":,-’TwanSZD:lD_Namedes END 100 Feet
t
4
4 1 | 3
QK ] ’ Cancel ] ’Environments... ] [ Show Help ==
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Specify the projected crash point shapefile as the Input Features and the roadway shapefile
as the snap environment (i.e., features to which crash points will be snapped). The feature
type setting controls the location of the snap. If the crash points correspond to intersection
crashes, specify End as the feature type to snap to the nearest intersection (i.e., snap to the
nearest feature’s endpoint). Ifthe crash points correspond to segment crashes, specify Edge
as the feature type to snap to the nearest roadway segment (i.e., snap to the nearest feature’s
edge). Finally, specify a snapping distance — i.e., maximum distance over which a point
will be moved to the nearest roadway feature. For example, setting this value to 100 feet
means that no point will be moved to a roadway or intersection if the roadway or
intersection is more than 100 feet away from the current location of the crash point. Click
OK.

Before snapping After snapping

. Allocating crashes to each TAZ requires a two-step process because roadways define the
boundaries of TAZs. For crashes located on a roadway that serves as the boundary for two
TAZs (or located at an intersection that falls on the border of two or more TAZs), an
additional processing step is needed to proportionally allocate crashes.

i.  Use the Spatial Join tool to identify crashes that are located on the boundary of
multiple TAZs: ArcToolbox — Analysis Tools — Overlay — Spatial Join. Specify
the crash point shapefile as the Target Features and the TAZ shapefile as the Join
Features. This spatial join will append to each crash point the attribute data
corresponding to the TAZ(s) that intersect that crash point. The Join Operation
should be set to One _to One. As such, if a single crash point intersects two TAZs,
then the join count statistic corresponding to this point will be 2. Set the Match
Option to Intersect. Click OK.
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A

Spatial Join

Target Features

| IntersectionCrashes_KAB

Join Features

L4
B

[Tazz010
Output Feature Class
CATEMPYLIOIN_TAZ_to_IntCrashes.shp

Join Operation (optional)
JOIM_OME_TO_OMNE

F.eep All Target Features [optional]

Field Map of Join Features {optional)
Crash_ID (Double)
Year (Double)
Injury_Sew (Text)
latitude (Double)
longitude {Double)
[ STATEFP10 {Text)
COUNTYFR10 {Text)
[ MPOCELD (Text)

[ TADCELD (Text)
[ TAZCELO (Text)
GEOIDLO (Text)
Cluster (Short)
Area_sgkm (Float)
TownMame {Text)

Match Option (optional)
INTERSECT

L
B

o

[ oK ] [ Canicel

] [Environments... ] [ Show Help == ]

11.

1il.

A new crash point shapefile is

created that includes the field Join Count.

Join_Count records the number of TAZs associated with each crash point.

Add a new field to the attribute table associated with the newly created crash point
shapefile to store the reciprocal of the Join Count field. This field will be used to
perform the proportional allocation. For example, if the Join Count value for a
crash point equals 2, then the reciprocal value will equal 2 and the crash will be
equally divided between the two associated TAZs. A new field can be added using
the Add Field tool: ArcToolbox — Data Management Tools — Fields — Add
Field. Specify the Field Name as JoinFactor and the Field Type as float.

Open the attribute table, right click on the column heading corresponding to the
new field JoinFactor, and select Field Calculator. Enter the expression: 1 /

[Join_Count]. Click OK.



Field Calculator P
Parser
(@) VB Script () Python
Fields: Type: Functions:
FID : (@) Mumber igf[( ))
Shape - . Cos( )
Join_Count () 5tring Exp ()
recip_join 7 Date IFD;E g
- n
Log ()
sin()
Sar()
Tan ()
[ show Codeblock
! +
Bvce EEEEEE
1/ [Join_Count]| -
[ Clear ] [ Load... ] [ Save... ] [ Help ]

Table

R RS

TAZs to_IntCrashes_KAB_Sploin
FID | Shape | Join_Count JoinFactor
21 | Paint 1 1
22 | Point 3 0333333
23 | Point 2 05
24 | Point 2 05
25 | Point 2 05
26 | Point 2 05
27 | Point 2 05
28 | Point 2 05
29 | Point 1 1
30 | Point 1 1
3 1 1

L]

4

Point

UrrlE

The JoinFactor field should correspond to the reciprocal of the Join_Count field.

iv.  Use the Spatial Join tool a second time to calculate the total number of crashes
occurring within each TAZ accounting for proportional allocation. Specify the
TAZ shapefile as the Target Features and the newly created crash point shapefile
(i.e., crash point shapefile containing the field JoinFactor) as the Join Features. The
Join Operation should be set to One to One. As such, if several crash points are
located in a single TAZ, then the join count statistic corresponding to this TAZ will
represent the total number of crash points associated with the TAZ. Set the Match
Option to Intersect. Under the Field Map of Join Features, right-click on the field
JoinFactor and set the Merge Rule to Sum. This will sum the JoinFactor values for
all crash points that intersect each TAZ and perform the proportional allocation.

Click OK.




Field Map of Join Features {optional)
-MTFCC10 (Text)
-FUNCSTAT10 (Text)
- ALAMD10 (Double)

- AWATER10 (Double)
-INTPTLAT 10 (Text)
-INTPTLOM10D (Text)
- Area_sgkm (Float)
-Clst_3LC (short)
-Clst_3LC_P (Shart)
-Clst_3LC3D (Short)

- Join_Count (Lang)

B y
Delete es\KAB_IntersCrashes_StateWWide\TAZs
— Rename
<
MabdﬂTp Merge Rule 3 None il
INTERSE . Minimum
hRa Properties...
St R4 Maximum
Standard Deviation L
Mean =
Median
¥ Sum
Join
First
Last
I 0
Count
*\ Spatial Join _||E|E|
~
Targek Features =
|Tazz010_pri | &
Join Features
| J0IN_TAZ5_to_InkCrashes | &
Output Feature Class
| €\TEMPYIOIN_IntCrashes_ta_TAZs.shp | @
Join Operation {optional)
| J0m_onE _To_onE v|

Keep Al Target Features [optional)

Field Map of Join Features (optional)

MPOCELD 1 {Text) ~
TADCE10_1 (Text)

TAZCELO 1 (Text)

GEOIDIO_1 (Text)

MTFCC10_1 (Text)

+|
Ed
FUMCSTATI0_L {Texk) ﬂ
N

ALAND10_1 {Double)
AWATERLO_] {Double)
INTPTLATIO_L (Text)
IMNTPTLOM1O0_1 (Text)
Area_sqgkm_1 {Float)
Clsk_3LC_1 {short)
Clsk_3LC_P_1 {Short)
Clsk_3LC3D_1 {Short)

52 e o R a3 e e e T

JoinFar ak]) \_:
Iatch Option {optional)
INTERSECT v v

[ a4 ] ’ Cancel ] ’Environments...] ’ Show Help == ]

A new TAZ shapefile is created that includes the fields: Join Count, which
represents total number of crash points that intersect each TAZ, and JoinFactor,
which represents the proportional allocation of crash points (i.e., number of crash
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II.

points that intersect each TAZ accounting for crashes occurring along TAZ
boundaries).

- - (R Ay O X
IntCrashes_PropSum_TAZ_KA&E_Sploin x
FID l Shape * | Join_Count | TADCE10 | TAZCE1D GEOIDA0 Area_sqkm | JoinFactor »
43 F‘DI\,ng!'u . 23 00000010 00001154 | 0900300001134 | D.?SBBDS_ 15
46 |Polygon | 000000010 00001116 0900300001116 | 327447 | 0
47 F‘DI\,ng!'u | 29 00000010 00001156 | 0900300001156 | D.?2?259_ 20
4& |Polygon | 2300000010 (00001193 /0900300001193 | 0428151 | 145333
43 F‘DI\,ng!'u | 37 00000010 00001169 0900300001169 | 061 2059_ 258333
30 |Polygon | 400000010 00001174 0900300001174 | 0E01634 | 4
31 |Polygon | 16 /00000010 00001179 |0300300001179 | 0402309 | 9
52 |Polygon | 900000010 000011354 0900300001154 | 0563953 | 6.33333
33 |Polygon | 300000010 (00001202 0900300001202 | 145821 | 1.5] @
4 ok M E (0 out of 1806 Selected)

v.  The attribute table associated with the newly created TAZ shapefile can be exported
as a .dbf or .txt file by selecting Export from the Table Options drop-down menu (

=17, The JoinFactor field should be rounded up to the nearest whole number for
modeling. The updated data replaces the IntCrsh KAB or SegCrsh KAB column
in the model database, depending on type of crashes updated.

Updating roadway data
Note: The steps below assume that updated roadway features are stored as a shapefile. It is

also assumed that the roadways features within the shapefile have been edited such that
roadway line segments that shared coincident endpoints and the same roadway name were
merged to produce a single roadway feature. In addition, it is assumed that roadways under
state jurisdiction and unnamed roadways (e.g., private driveways or private roads) have been
removed from the roadway shapefile. Only named roadways under local jurisdiction were
considered when calculating the number of intersections and total length of roadways within
each TAZ.

a. Add the updated roadway shapefile and the TAZ shapefile to ArcMap. Confirm that the

projected coordinate system associated with the roadway shapefile matches the projected
coordinate system associated with the TAZ shapefile. If not, follow the steps in section
L.b. to project the roadway shapefile so that it matches the projected coordinate system
associated with the TAZ shapefile.

First, calculate the total length of named roadways under local jurisdiction associated with
each TAZ. As previously mentioned, roadways define the boundaries of TAZs.
Proportional allocation was used to divide the length of the shared roadway evenly between
both TAZs.
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Use the Intersect tool (ArcToolbox — Analysis Tools — Overlay — Intersect) to
overlay TAZs onto the roadway features. This operation splits roadway features at
TAZ boundaries, but also creates duplicate line segments for all roadways falling
along the border of two TAZs (e.g., roadway A intersected with TAZ 1 and roadway
A intersected with TAZ 2). Select the roadway and TAZ shapefiles under Input
Features. Specify the JoinAttributes option as All and the Output type as Line.
Click OK.

"\ Intersect

Input Feaktures

Features Ranks
< TwnRds2010_NamedRds
SO TAZZO10

|~

| CATEMPATownRds_TAZ_Inkersect.shp |
JoinAttributes (optional)

! ALL w ,
a4 Tolerance (optional)

| | EMeters v!
Qutput Type {optional)

| LInE v|

OF ] [ Cancel ] [Environments... ] [ Show Help ==

1l

The length of the roadway line segments split at TAZ boundaries must be updataed
in the newly created shapefile. Add a new field to the attribute table using the Add
Field tool (see section I.d.ii.). Specify the Field Name as RoadLength and the Field
Type as float. Open the attribute table, right click on the column heading
corresponding to the new field RoadLength and select Calculate Geometry. A
warning box may appear — click Yes. Specify Length as the property to calculate
and set the units to miles. Click OK.

Calculate Geometry

Property: | Length w |

Cootdinate System
(2} Use coordinate system of the data source:
PC5: MAD 1983 StatePlane Connecticut FIPS 0600

() Use coordinate system of the data frame:

Units: Miles US [mi] v|

o] (o)
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iil.

1v.

Add a second field named BoundaryRd to the attribute table and set the Field Type
to short integer. This field will identify roadways that fall along the border of two
TAZs and will be used to proportionally allocate one half of the total roadway
length to each TAZ.

Use the Select by Location tool (Selection — Select by Location) to identify the
roadways that fall along the border of two TAZs, open the. Specify the Target layer
as the TAZ-roadway intersected shapefile, specify the Source layer as the TAZ
shapefile and use the method to select “Target layer(s) features share a line segment
with the Source layer features”. This will select all roadways that fall along the
border of a TAZ. Click OK.

Select By Location

Select Features from one or mare target layvers based on their location in
relation ko the Features in the source laver,

Selection method:

select Features From

Target layeris):

TownRds_TAZ_Intersect
[0 TwnRds2010_MamedRds
[0 ChkySubdivez010_prj

[ TazZz010

[Jonky show selectable layvers in this list

Source layer:

(& Tazz010 |~

(0 Features selected)

Spatial selection method:

Target layver(s) features share a line segment with the Source layver Feature w

ok || ey | [ e |

With the border roadways selected, open the attribute table associated with the
intersected shapefile. Right click on the column heading corresponding to the field
BoundaryRd and select Field Calculator. Set the BoundaryRd field value to 4.
Recall: The intersect operation created two duplicate roadway line segments for all
roadways falling along the border of two TAZs. Each line segment must be divided
by 4 to ensure one half of the roadway length is assigned to each TAZ. Only the
roadway features currently selected will have their BoundaryRd field updated.
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Vi.

Vii.

Viil.

iX.

Field Calculator @El

Parser
(%)W Scripk () Python
Figlds: Type: Functions:
E|
STATEFP10 A abs( )
Turmby
COUNTYFF10 © umber atn( 3
MPOCELD O string Cos( )
TADCELD Exp( ]
TAZCELD O Date Fix { )
GEOID0_1 {”t( J
Cluster Siong(( ))
Area_sgkm Sl )
TownMame Tan( )
Roadlength
BoundaryRd i
[ 5how Codeblock -
i +
R W LE
4
[ Clear ] [ Load... ] [ Save. .. ] [ Help ]

A

Reverse the selection using the Switch Selection button (= ). This will select all
roadways that do not fall along a TAZ boundary. Follow the steps above to set the
BoundaryRd field value to 0 for these roadways.

After the calculation is complete, clear all selected features (Selection — Clear
Selected Features).

Add a third field named PropAlloc to the attribute table associated with the TAZ-
roadway intersected shapefile. Set the Field Type to float. Use Field Calculator to
enter the expression: [RoadLength] / [BoundaryRd]. Click OK.

Open the Summary Statistics tool to summarize the proportionally-allocated
roadway lengths for each TAZ: ArcToolbox — Analysis Tools — Statistics —
Summary Statistics. Specify the TAZ-roadway intersected shapefile as the Input
Table, set the Statistics Field to PropAlloc, set the Statistic Type to sum, and specify
the Case field as GEOID10 (i.e., the field that corresponds to a unique identification
number for each TAZ). Click OK.
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X.

"\ Summary Statistics |Z| |E|r5__<|
Ly

Input Table —
| TownRds_TAZ_Intersect ﬂ @
Output Table

| CATEMPY TotalRdLength_byTAZ | @

Skatistics Field{s)

Field Statistic Type L

Propalloc SUM

< | =
Case Field {optional)

| v|

GECQIDIO +

)

[ QK l [ Cancel ] [Environments...] [ Show Help ==

The resulting table can be exported as a .dbf or .txt file. The field SUM_PropAlloc
replaces the Length Roadway column in the database corresponding to the
prediction model for segment crashes.

c. Next, calculate the total number of intersections involving named roadways under local
jurisdiction associated with each TAZ.

1.

Use the Intersect tool (ArcToolbox — Analysis Tools — Overlay — Intersect) to
overlay the roadway shapefile onto itself; i.e.,, roadway shapefile should appear
twice under Input Features and the Output Type should be set to Point. This
operation creates a point feature at the intersection of each pair of line segments,
but also creates duplicate points at each intersection (e.g., roadway A intersected
with roadway B, roadway B intersected with roadway A).
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1il.

1v.

“\ Intersect

Input Features
\ =
Features Ranks ﬂ
7 TwnRds2010_NamedRds
< TwnRds2010_NamedRds ﬂ
i
4
4 *
Oukput Feature Class
CATEMPYNamedRds_Intersect.shp ﬂ
Joinattributes {optional)
ALL v
%Y Tolerance {optional)
Meters L
Qukput Type {optional)
POINT -
OK ] [ Cancel ] [Environments... ] [ Show Help ==

To remove duplicate intersection points, create a new field that contains the x- and
y-coordinates for each point then use this field to remove all points that share the
same coordinate pair. Add a new field to the attribute table associated with the
newly created intersection shapefile (see section I.d.ii.). Specify the Field Name as
x_coord and the Field Type as float. Open the attribute table, right click on the
column heading corresponding to the new field x coord and select Calculate
Geometry. A warning box may appear — click Yes. Specify as the property to
calculate as X Coordinate of Centroid and set the units to meters. Click OK.
Repeat the above procedure to add a new field named y_coord and calculate the Y
Coordinate of Centroid.

Create a new field named coord and set the Field Type to Text. This field will store
the coordinate pair. Use Field Calculator to enter the expression: [x coord] & " "
& [y_coord]. This will concatenate the x- and y-coordinate fields to create a new
field that contains the x-coordinate followed by a space followed by the y-
coordinate. Note: Be sure to include a space between the set of quotations. Click
OK.
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Field Calculator

Patser
(=) YE Script ) Python
Fields: Type: Furickions:
E]
COUSUBFP_1 ~ abs ()
COUSUENS_L 1 ©Number Atni )
GECIDIO_L Strin Cos i )
MAMELD_1 # 53 Exp( )
NAMELSAD_1 O Date Fix( )
RdLength_1 i”t( y
RdLen_Mi_L e (( ))
Rdtm_Twn_1 Sqri )
%_roard Tant )
y_coord B
coord w
[]show Codeblock. .
1 [&]
st O0ED0C
[x_coord] &" " & [yv_coord]|
[ Clear l [ Load... ] [ SavE. .. l [ Help l
I QK l [ Cancel l

Open the Dissolve tool (ArcToolbox — Data Management — Generalization —
Dissolve). You will use the field coord to remove all duplicate points. Dissolve
works by aggregating all features that share the same attribute value, in this case
the same coordinate pair. Click OK.



I1I.

Inpuk Features

| Mamedrds_Intersect ﬂ g

Qutput Feature Class

E-C.:;l,-'i'-l.if\:iiz.'-'l,-I-n"terseEEians_I;I.ameciRcis.si‘np

Dissalve_Fieki(s) (optional) ] L
[] mamE1I_1 |

[] mamELSAD 1
[] RdLength_1
[] rdLen_mi_1
] Rdmm_Twn_1
[] %_coord

[ v_coord
coord

[ Select All ” Unselect Al
Statistics Field{s) (optional)

v
| Field Statistic Type |

]
1| a

[ (8] 4 ] ’ Cancel ] ’Environments... ] ’ Show Help == ]

vi.  To calculate the number of intersections occurring within each TAZ based on
proportional allocation, follow the procedure in section I.d.

vii.  The attribute table associated with the newly created TAZ shapefile can be exported
as a .dbfor .txt file. The JoinFactor field replaces the Number Intersection column
in the database corresponding to the prediction model for intersection crashes.

Updating TAZ cluster membership
Note: The steps below assume that the 2016 National Land Cover Database for Connecticut

has been downloaded in ArcGIS raster format —i.e., GRID. A license for the Spatial Analyst
extension is required for this procedure.

a. Add the updated land cover grid and the TAZ shapefile to ArcMap.

b. If the coordinate system associated with the new land cover grid does not match the
coordinate system associated with the TAZ shapefile (State Plane Coordinate System
for CT based on the North American Datum of 1983) or uses a geographic coordinate
system solely, the land cover grid must be projected. Open ArcToolbox and select Data
Management — Projection and Transformations — Raster — Project Raster, then
follow the steps in section Lb.

c. Land cover intensities were calculated based on the number of cells classified as
developed within each TAZ. The National Land Cover Database classification system
has three land-cover classes corresponding to developed land: a) low intensity
developed — single family housing, less than 50% impervious surface [class code 22];
b) medium intensity developed — single-family housing, between 50-80% impervious
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surface [class code 23]; and c) high intensity developed — apartment complexes,
commercial and industrial areas, greater than 80% impervious surface [class code 24].
You will create three new raster layers, one for each developed class.

Note: Class codes may change values between 2011 and 2016; be sure to check the
legend accompanying the land cover grid to confirm you have the correct class codes
for low, medium and high intensity developed. The instructions below assume the class
codes have not changed from 2011 to 2016.

. Use the Reclassify tool (ArcToolbox — Spatial Analyst Tools — Reclass —
Reclassify) to create a new raster layer where all cells classified as low intensity
developed are set to a value of 1 and all other cells are set to a value of 0. Specify the
land cover grid as the Input raster, set the Reclass field to Value, and use the
Reclassification table to set all cells with a current value of 22 to 1 and all other values
to 0. Note: If the reclassification table displays a range of values in each row, hit
Unique. In addition, be sure cells classified as NoData remain in the class NoData.

"\ Reclassify g@g|

Inpuk raster
[ rlcdz011 x| &
Reclass field

WALLE w
Reclassification

Old values New values »~

J 11 0 Classify,..
i g ]
J 35 1 nique
i 23 0
. 0
0 k)l 0
] 4 0

| 0 4

42
Reverse Mew Ualues] [ Precision. .. ]

Jubput raster
CATEMPHlowintdey B

[] Change missing walues ta Moliata [optional]

Ok l [ Cancel ] [Environments... ] [ Show Help ==

Repeat the above procedure two additional times to create new grids for medium (23)
and high (24) intensity developed.

To determine the number of developed cells within each TAZ, you must sum all grid
cells with a value of 1 that occur within the boundaries of each TAZ. This is
accomplished using Zonal Statistics (ArcToolbox — Spatial Analyst Tools — Zonal
— Zonal Statistics as Table). Specify the TAZ shapefile as the Feature Zone data and
set the Zone field to GEOID10 (e.g., unique identification number for each TAZ). The
Input value raster should be set to one of the developed grid (e.g., lowintdev). Set the
Statistics type to Sum and confirm that the Ignore NoData in calculations option is
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checked. The output of the procedure is a table with the field SUM, which records the
number of developed cells within each TAZ.

“\ Zonal Statistics as Table

Input raster of feature zone data

|Tazz010 | g
Zone field

GEQIDIO w
Input walue raster
|I0wintdev j @
Qukput table

CATEMPYowint_cells @
lgnore Mol ata in calculations [optional]
Statistics bype {optional)

UM w

[o]4 ] [ Cancel ] [Environments... ] [ Show Help ==

g. Repeat the above procedure two additional times to create tables for medium and high
intensity developed.

h. The resulting tables can be exported as .dbf or .txt files. Convert the updated cell counts
to area in square kilometers using the equation: (number of cells x 900m?) / 1,000,000.
Note: The cell size for NLCD raster data is 30m x 30m or 900m?.

1. Use the look-up table in Appendix A (Table A.1 Interval Values of Each Clustering
Variable by Cluster) to adjust cluster membership values as needed.

IV. Updating demographic data

a. Demographic data can be updated with the release of the 2020 U.S. Census by
downloading the following variables from the Census Transportation Planning Package
Database, specifying TAZ as the unit of analysis: population, retail and non-retail
employment, and mean household income. The updated values replace the variables
Population, Employment Retail, Employment Non-Retail, and Income Mean in the
model databases for intersection and segment crashes.

b. To update the population density values used in the cluster analysis, open the TAZ
shapefile in ArcMap and export the table to .dbf or .txt format. The TAZ shapefile
includes the field Area_sqgkm (i.e., area of each TAZ in square kilometers). This field
should be used to update the population density values for each TAZ (i.e., number of
people per square kilometer). Updated population density values can be combined with
updated land cover intensities to adjust cluster membership values as needed in
accordance with Table A.1 in Appendix A.
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Appendix E Instructions for Computation of Crash Rates by
TAZ Area

In this project, we intentionally didn’t use crash rates by TAZ size to develop SPFs, as current
practice in traffic safety analysis doesn’t recommend making decisions on the basis of crash rates,
but rather crash counts. However, if researchers are interested in comparing crash experience
among TAZs using crash rates, the following procedures can be followed.

1. In the assembled TAZ level data for model estimation and expected crashes provided along
with this document, calculate crash rates (crashes per km?) for each TAZ by dividing the
observed and expected crash counts by the TAZ area for both the intersection and the segment
files.

2. Insert the new crash rate variables into the visualization tool to conduct safety analysis,
following the instructions in Appendix D.
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