Chapter 2 Inventory of System Airports

2.1 Introduction

In Connecticut there are 153 active aviation landing areas that include 55 airports and 7 seaplane bases, shown in Figure 2.1, and 92 heliports. There are 23 airports, one includes a seaplane base, open for public use while 32 airports and 6 seaplane bases are restricted landing area airports (RLA’s), which means they are for private use only. The airports are classified in the following ways:

- by ownership; state, municipal, or private and whether open to the public or for private use only
- whether commercial airline service is provided
- by the type of aircraft that operate at the facility

Connecticut has 6 state-owned, 4 municipally-owned and 13 privately-owned airports that are open to the public. Table 2.1 includes information such as runway dimensions, based aircraft and total operations for each of these airports. Table 2.5 includes similar information for the 38 RLA’s. All of these facilities provide a vital contribution to the transportation system in Connecticut and an economic benefit for the communities in which they are located.

A survey has been conducted of the conditions at each of the 23 existing airports that are open to the public. This chapter presents a general overview of the findings, as well as a brief discussion of RLA’s. The information is presented for state, municipal and privately owned open to the public airports. For each airport there is a brief description of the existing facilities and services, the location, access and ownership of the airport, zoning and existing land use, and the potential constraints that have been identified. Also included for each airport is the Airport Reference Code (ARC), Runway Safety Areas, Class of Airspace, and Service Area (a general explanation of these is provided below). Also described is the Federal Aviation Administration (FAA) National Plan of Integrated Airport Systems (NPIAS) service level and the role for airports included in that plan.

Influential airports from surrounding states are also discussed. A description of these airports can be found in Section 2.7 and in Table 2.6.

2.1.1 Airport Reference Code

The FAA classifies airports according to the ability to safely accommodate certain types of aircraft. The criteria they use is the approach speed and wingspan of the design aircraft intended to operate at an airport. This classification is the Airport Reference Code (ARC). The aircraft approach category (speed) is depicted by a capital letter, and the airplane design group (wingspan) is depicted by a Roman numeral as depicted in Table 2.2. In defining the “critical” or “design” aircraft, frequency of use is a factor.
<table>
<thead>
<tr>
<th>AIRPORT NAME ID ASSOCIATED</th>
<th>TOWN OWNER</th>
<th>NPIAS</th>
<th>ROLE</th>
<th>NO. OF ACRES</th>
<th>RUNWAY ORIENTATION</th>
<th>RUNWAY DIMENSIONS</th>
<th>RUNWAY SURFACE</th>
<th>DISPLACED THRESHOLD ARC</th>
<th>AIRSPACE TOTAL OPERATIONS FOR 2004</th>
<th>NO. OF BASED AIRCRAFT 2003</th>
<th>APPROACH LIGHTING AREA ZONING</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
<td></td>
</tr>
<tr>
<td>PUBLIC</td>
<td></td>
</tr>
<tr>
<td>APPLICABLE</td>
<td></td>
</tr>
<tr>
<td>MUNICIPAL</td>
<td></td>
</tr>
<tr>
<td>PRIVATE</td>
<td></td>
</tr>
</tbody>
</table>

Table 2.1: Public Use Airports In Connecticut

Connecticut Statewide Airport System Plan Chapter 2 - Inventory June 2006 2-2
Therefore occasional use by aircraft larger in size or faster in approach speed or weighing in excess of 12,500 pounds (large aircraft as defined by FAA) does not overly influence the design of an airport. The use of the ARC is applied to an airport as well as an individual runway and assists in the design standards to be used for the airport. The longest runway usually designates the ARC for the airport but smaller runways can have a different ARC designation for design purposes.

Table 2.2 – Airport Reference Codes

<table>
<thead>
<tr>
<th>Approach Category</th>
<th>Minimum Speed (knots)</th>
<th>Maximum Speed (knots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 0</td>
<td>< 91</td>
</tr>
<tr>
<td>B</td>
<td>≥ 91</td>
<td>< 121</td>
</tr>
<tr>
<td>C</td>
<td>≥ 121</td>
<td>< 141</td>
</tr>
<tr>
<td>D</td>
<td>≥ 141</td>
<td>< 166</td>
</tr>
<tr>
<td>E</td>
<td>≥ 166</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Aircraft Design Group</th>
<th>Minimum Wingspan (feet)</th>
<th>Maximum Wingspan (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>≥ 0</td>
<td>< 49</td>
</tr>
<tr>
<td>II</td>
<td>≥ 49</td>
<td>< 79</td>
</tr>
<tr>
<td>III</td>
<td>≥ 79</td>
<td>< 118</td>
</tr>
<tr>
<td>IV</td>
<td>≥ 118</td>
<td>< 171</td>
</tr>
<tr>
<td>V</td>
<td>≥ 171</td>
<td>< 214</td>
</tr>
<tr>
<td>VI</td>
<td>≥ 214</td>
<td>262</td>
</tr>
</tbody>
</table>

Source: FAA AC 150-5300-13, Airport Design

2.1.2 Runway Safety Areas

The Runway Safety Area (RSA) enhances the safety of airplanes that undershoot, overrun or veer off the runway. According to FAA Advisory Circular (AC) 150-5300-13, of airplanes that undershoot or overrun the runway, 90 percent stay within 1000’ of the runway end. The dimensions of RSAs vary depending on the type of aircraft using that runway. The RSA has to be capable of supporting airplanes without causing structural damage to the airplane or injury to its occupants. The RSA also provides greater accessibility for firefighting and rescue equipment during an incident. The objective of FAA Order 5200.8, “Runway Safety Area Program”, is that all RSAs at federally obligated airports and all RSAs at airports certified under CFR part 139 shall conform to the standards to the extent practicable. Some runways have obstacles such as bodies of water, sharp drop-offs, wetlands, roads or railroads that make the construction of a standard safety area impracticable. In an instance like this Engineering Materials Arresting Systems (EMAS) may be required. EMAS is comprised of materials such as blocks of cellular cement and is used as part of the RSA in constrained areas to help stop aircraft without causing major damage to aircraft or passengers. Table 2.3 shows the dimensions of existing RSAs for state and municipally owned airports and the FAA standards for those RSAs.
Table 2.3 – Runway Safety Area Dimensions

<table>
<thead>
<tr>
<th>Airport</th>
<th>Runway</th>
<th>Existing RSA Dimensions</th>
<th>FAA Standard RSA Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length*</td>
<td>Width**</td>
</tr>
<tr>
<td>Bradley</td>
<td>01-19</td>
<td>800’/800’</td>
<td>400’</td>
</tr>
<tr>
<td></td>
<td>06-24</td>
<td>1000’/1000’</td>
<td>500’</td>
</tr>
<tr>
<td></td>
<td>15-33</td>
<td>1000’/1000’</td>
<td>500’</td>
</tr>
<tr>
<td>Brainard</td>
<td>02-20</td>
<td>62’/295’</td>
<td>500’</td>
</tr>
<tr>
<td></td>
<td>11-29</td>
<td>400’/450’</td>
<td>500’</td>
</tr>
<tr>
<td>Groton</td>
<td>05-23^</td>
<td>475’/555’</td>
<td>420’/500’</td>
</tr>
<tr>
<td></td>
<td>15-33</td>
<td>300’/300’</td>
<td>150’</td>
</tr>
<tr>
<td>Oxford</td>
<td>18-36</td>
<td>920’/720’</td>
<td>500’</td>
</tr>
<tr>
<td>Windham</td>
<td>09-27</td>
<td>75’/20’</td>
<td>150’</td>
</tr>
<tr>
<td></td>
<td>18-36</td>
<td>130’/130’</td>
<td>120’</td>
</tr>
<tr>
<td>Danielson</td>
<td>13-31</td>
<td>240’/240’</td>
<td>250’</td>
</tr>
<tr>
<td>Tweed</td>
<td>02-20^</td>
<td>250’/250’</td>
<td>500’</td>
</tr>
<tr>
<td></td>
<td>14-32</td>
<td>300’/300’</td>
<td>150’</td>
</tr>
<tr>
<td>Sikorsky</td>
<td>06-24^</td>
<td>100’/0’</td>
<td>500’</td>
</tr>
<tr>
<td></td>
<td>11-29^</td>
<td>250’/149’</td>
<td>500’</td>
</tr>
<tr>
<td>Danbury</td>
<td>08-26</td>
<td>150’/150’</td>
<td>300’</td>
</tr>
<tr>
<td></td>
<td>17-35</td>
<td>150’/150’</td>
<td>300’</td>
</tr>
<tr>
<td>Meriden</td>
<td>18-36</td>
<td>240’/240’</td>
<td>120’</td>
</tr>
</tbody>
</table>

*Length – number of feet beyond each end of runway;
**Width – total width, using runway centerline as RSA centerline.
^ A project or study is underway or planned for the near future.

2.1.3 Airspace

The airspace over Connecticut is under the jurisdiction of the FAA; Congress in the Federal Aviation Act of 1958 granted this authority. The Congressional mandate requires FAA to establish a safe and efficient airspace environment for civil, commercial, and military aviation, as well as to protect persons and property on the ground. To help meet this mandate FAA established the National Airspace System (NAS). The NAS is a plan for the aviation, air traffic management, and air navigation system in terms of services,
functions, and performance provided to the users. It describes the systems, people, procedures, and policy relationships necessary for safe, efficient, effective, and cost-beneficial aviation.

There are two basic types of aircraft flight regimes recognized by the air traffic control system; those operating under visual flight rules (VFR) which depend primarily on the “see and be seen” principle for separation, and those operating under instrument flight rules (IFR) which depend on radar detection by ground controllers for separation. IFR flights are controlled from takeoff to touchdown, while VFR flights are controlled only in the vicinity of airports, as explained below.

United States airspace is structured into controlled and uncontrolled areas. Airspace classification affects the requirements for radio communication, minimum pilot ratings, and VFR/IFR operations. Controlled airspace is delineated as Class A, B, C, D or E. Uncontrolled airspace is referred to as Class G. Each class of airspace is described below, and a typical airspace diagram is shown in Figure 2.2. Table 2.4 provides the general dimensions of airspace classes.

Class A airspace consists of the airspace from 18,000 feet above mean sea level (MSL) up to 60,000 feet above MSL over the contiguous 48 states and Alaska. Only IFR flights are permitted in Class A airspace, and aircraft must be equipped with an operable transponder, which is an electrical device that provides information including aircraft identification and altitude.

Class B airspace is specific airspace around major airports. It is from the ground to 10,000 feet above MSL and extends from 15 to 30 nautical miles around the airport. The specific shape of each Class B airspace is individually designed to meet the needs of a particular airport and is multi-layered. The diameters of these circular patterns are smaller at lower altitudes, so that the shape of typical Class B airspace is described as an upside-down wedding cake. Pilots must contact the air traffic control facility for clearance to travel in Class B airspace.

Airports that have a 24 hour operational control tower, are serviced by a radar approach control facility, and have a certain number of IFR operations or passenger enplanements are protected by Class C airspace. This airspace generally extends from the surface to 4,000 feet above the airport elevation. From ground level to 1,200 feet above ground level (AGL) this airspace covers a radius of 5 nautical miles (NM) around the airport, and from 1,200 feet to 4,000 feet AGL the radius is 10 NM. Aircraft must establish radio contact before entering Class C airspace. These dimensions are not absolute and can be modified to meet the needs of surrounding airports.

Airspace around any airport that has an operating control tower but without designated Class B or C airspace is protected by Class D airspace. This airspace generally consists of the airspace within a horizontal distance of 5 statue miles from the center of the airport and extends from the ground to 2,500 AGL. Furthermore, these airports only have part-
time air traffic control tower (ATCT) service. After the tower closes, it reverts to Either Class E or Class G.

Class E airspace is the controlled airspace which is not designated as Class A, B, C, or D. This airspace does not have a specific control tower, but it has radar coverage. The top vertical limit is 18,000’ MSL while the bottom limit can be on the ground level, 700’ AGL, or 14,500’ MSL depending on the availability of radar service.

Class G airspace is the uncontrolled airspace. It is that portion of the airspace that has not been designated Class A, B, C, D or E. This airspace lies under Class E airspace and has no radar coverage at all. Thus the bottom limit is the ground level while the top limit can be either 700’ AGL, 1,200’ AGL, or 14,500’ MSL as it adjoins the Class E airspace.

The FAA controls the airspace described above through a hierarchy of facilities and coordinated areas of responsibility. An Air Route Traffic Control Center (ARTCC) provides air traffic control services to aircraft operating during the en route phase of IFR flights within the airspace assigned to that facility. A Terminal Radar Approach Control facility (TRACON) provides separation and sequencing of arriving and departing aircraft during the transition from en route to local flight phases (and the reverse) for airports within its area of responsibility. An ATCT provides separation and sequencing at and in the vicinity of a specific airport.

<table>
<thead>
<tr>
<th>Table 2.4 - Airspace Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Dimensions</td>
</tr>
<tr>
<td>Class</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>D</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>G</td>
</tr>
</tbody>
</table>

2.1.4 Service Area

The service area for an airport defines the region that the airport serves. The size of this area can vary depending upon the local population distribution, transportation infrastructure, and geography. An airport may also have several service areas, depending on the activity that occurs at the facility, such as commercial activity, air cargo activity or general aviation activity. There are two commonly used methods to determine an airports service area. They are the isochrone and the comparable airport methods which are described below.
The isochrone method uses driving time to derive an airport service area. The driving time depends on several factors such as the type of service or the airports location to major cities or towns. Typically, a 30 minute driving time is used for general aviation airports and 60 minutes for airports with commercial service. Applying this methodology, the geographic limit of a service area for an airport is defined using road speed limits specific to the region.

The comparable airport service area methodology assumes that surrounding airport service areas limit the use of a given airport. In other words, one airport draws from another. This methodology defines a comparable airport as a facility that provides similar or equal service.

These two methods may define very different areas. These areas are explained more fully in the narrative for individual airports.

2.1.5 Airport Role

The FAA established the National Plan of Integrated Airport Systems (NPIAS) as a result of the Airport and Airways Improvement Act, signed in 1982. The 2005-2009 NPIAS includes 3,344 airports throughout the United States that are essential in providing access to the Nation’s Air Transportation System and is based on national, state, and local policies and priorities. It provides general forecasts of aviation activity and identifies, for a five-year period, the planned capital developments and their related costs, which will be necessary to maintain a safe and efficient air system. The national plan recognizes fifteen of the twenty-three landing areas open to the public in Connecticut. Only publicly owned airports or airports designated as relievers and are also included in the plan are eligible for funds under the Airport Improvement Program (AIP).

Within the NPIAS, airports are classified by the type of service they provide to the community. They are divided into two categories, commercial service, or general aviation. Commercial service airports are public airports that enplane 2,500 or more passengers annually and receive scheduled passenger aircraft service. Commercial service airports are either primary or non-primary. Of the 546 commercial service airports in the United States 422 have more than 10,000 enplanements and are therefore classified as primary airports. Commercial primary service airports are further categorized as Hub Airports. Hub refers to the number of enplanements at that airport not to whether an airline uses the airport as a connecting complex. Hub categories for Primary Airports are defined as a percentage of enplanements for the entire United States (U.S.) in the most current calendar year available.

Large Hubs are those airports that account for at least one percent of total passenger enplanements. There are 31 large hub airports in the U.S. and they handle approximately 70 percent of all passenger enplanements. Large hub airports tend to concentrate on airline passenger and freight operations. Although a few large hub airports have several hundred based aircraft due to unique circumstances, most have only a few dozen.
Medium Hubs are defined as airports that account for between one quarter percent and one percent of the total passenger enplanements. There are 37 medium hub airports in the U.S. and they account for approximately 20 percent of all enplanements. Medium hub airports usually have sufficient capacity to accommodate air carrier operations and a substantial amount of general aviation. Medium hub airports average over 200 based general aviation aircraft.

Small Hubs are defined as airports that enplane between one twentieth and one fourth of one percent of the total passenger enplanements. There are 68 small hub airports in the U.S. and their combined total of enplanements is less than ten percent. With less than one fourth of the combined runway capacity used by airline operations, small hubs are primarily supporting general aviation activity. These airports are typically uncongested and do not account for significant air traffic delays.

Nonhub primary airports are defined as airports that enplane less than one twentieth of one percent of all commercial passenger enplanements but at least 10,000 annually. There are 247 nonhub primary airports in the U.S. and they account for approximately three percent of all enplanements.

General aviation airports are those airports not classified as commercial service. They include reliever airports, privately owned public-use airports and other airports that serve the needs of general aviation users. Reliever is an airport designated by the FAA as having the function of relieving congestion at a commercial service airport and providing more general aviation access to the overall community. These airports typically are required to have 100 based aircraft, 25,000 operations and relieve a commercial service airport. General aviation airports normally provide basic services to the aircraft operator such as storage, grounds maintenance, fuel and aircraft repair. In the interests of economy and maintenance, runway lengths are usually minimal. The current Connecticut Department of Transportation standard for the minimum runway length for commercially licensed airports is 2,200 feet. Those airports that do not meet this standard are grandfathered from a time when the minimum length was 1,800 feet. General aviation airports may be included in the NPIAS if they account for enough activity (usually at least ten based aircraft) and are at least 20 miles from the nearest airport included in the national plan. The activity criteria may be relaxed for remote locations or other mitigating circumstances. They are the most convenient source of air transportation for nearly one fifth of the population and are particularly important to rural areas.

Some of the general aviation airports have significant corporate activity. Corporate users will almost always choose turbine engines for power for both fixed-wing and helicopter. Therefore, they tend to choose airports with longer runways, instrument approaches and the availability of turbine engine services.

Restricted landing areas may be considered as another airport group in Connecticut. Together they are more numerous than the other groups combined and, although they

1 FAA Order 5090.3C - Field Formulation of the National Plan of Integrated Airport Systems (NPIAS)
2 Ibid
contribute substantial access to airspace, their affect is varied and distributed. RLAs will be discussed and their issues summarized collectively.

2.1.6 Zoning / Land Use

Airport and community compatibility is a recurring issue for planners, local officials and airport authorities. Much of the conflict between airports and surrounding land uses could be avoided with proper zoning.

While airports vary from small grass strips to commercial service airports, each airport represents a unique land use within a community. It is important for local planning offices and zoning boards to consider the potential impacts and contributions an airport may have. For example each town’s comprehensive plan should acknowledge airports in the area and consider their existing and future roles within that framework. Zoning designations should be established to help make the surrounding land use compatible.

In Connecticut, land use zoning within the geographic boundary of each municipality is under the authority of that municipality. It is important for towns to understand that appropriate zoning around an airport is important to minimize impacts. Compatible uses near an airport include commercial and some industrial uses. Highly noise sensitive land uses such as hospitals, churches and schools should be excluded. Residential zoning near an airport or off the end of a runway is not a good choice. This will inevitably lead to noise complaints as more residential development occurs. The extent of these complaints varies depending on the type and volume of aircraft using an airport.

Birds are a hazard to aircraft, therefore, land uses that are known to attract birds should be discouraged from locating near airports. Some of these uses are landfills, fish processing plants, agricultural uses, open space such as bird refuges, and storm water retention ponds. Zoning officials should also take into consideration functions that may attract wildlife to the airport property, such as nature preserves.

Smoke and glare can hinder safe and efficient airport operations, therefore any industrial or manufacturing processes that generate significant quantities of smoke; dust or steam are not considered compatible land use. Also careful consideration should be given to buildings with metal roofs or bright signs that could produce glare. A study should be done for a specific proposal if it has the potential to create some of these problems.

Another source of conflict between land uses and aviation activity occurs with height interference. The FAA has adopted standards for determining obstructions to air navigation in Federal Aviation Regulations (FAR) Part 77, “Objects Affecting Navigable Airspace, Subpart C”. These standards safeguard the operation of aircraft in, out and around an airport. The regulations provide for the establishment of imaginary surfaces that no object, man-made or natural should penetrate. FAR Part 77 also establishes a federally-imposed procedure whereby the height of any proposed obstacle can be monitored in order to determine the effect, if any, on aircraft operations. The FAA determines which penetrations to the FAR Part 77 imaginary surfaces constitute hazards.
to air navigation and must be removed and which are not hazards and may be lighted. In an effort to foster and protect the utilization of an airport, cities and towns are encouraged to adopt height restriction ordinances that define and provide for the establishment of various zones and height limitations for each zone based on the provisions of FAR Part 77. As cell phone usage continues to grow and carriers scramble to build new towers it is inevitable that there will be some conflicts with aviation. Each tower location should be carefully reviewed. A vegetation management plan study for all six state owned airports is underway.

2.2 State Owned Airport Facilities

2.2.1 Bradley International Airport - (BDL)

Bradley International Airport (BDL) is Connecticut's premier air carrier airport and the second largest in New England. Constructed by the U. S. War Department in 1941 it sits on 2,432 acres. BDL provides air passenger service to the Pioneer Valley from New Haven to Greenfield Massachusetts. It is identified in the 2005-2009 NPIAS as a commercial service primary, medium hub airport. BDL's exceptional instrument landing system (ILS) approaches and existing aircraft maintenance and repair facilities contribute to its commercial attraction. The airport also has car rentals, a hotel, restaurants, and shops. There are three runways; 01-19 is 5,145 feet long, 06-24 is 9,510 feet long and 15-33 is 6,847 feet long. All three runways have the required RSAs. There is a proposal to shorten runway 01-19 so that it does not cross runway 06-24, this is slated to begin in the Spring of 2006.

A new parking garage, a terminal roadway project, international arrivals building and federal inspection station, an airfield maintenance facility along with a new terminal and concourse were recently completed. Renovation to terminal A and concourse C is planned to take place over the next few years. An updated master plan is nearing completion and a Part 150 noise study has been completed. Security enhancements are ongoing.

Although the success of airports is often considered from a passenger service viewpoint, BDLs importance as a cargo terminal has grown steadily accompanied by significant ancillary development. BDL currently has three on-airport cargo areas. These areas include multi-user facilities operated by RONCARI and AFCO, plus the UPS Air Express sorting hub. The RONCARI Air Cargo Terminal is located near the passenger terminal. It has a 350,000 square foot ramp area adjacent to two buildings totaling 90,000 square feet leased by airlines and ground handlers. The AFCO facility includes two buildings totaling 86,000 square feet located on the northwest side of the airport. These buildings are mainly leased to integrated carriers. This facility has 500,000 square feet of adjacent apron space for parking and servicing aircraft. UPS operates a dedicated 230,000 square foot terminal with a 150,000 square foot ramp on the east side of the
airport. In the future, the airport plans to develop a new cargo facility on 22 acres of land at the north side.

The majority of forwarders, brokers and other cargo firms are located in a number of industrial facilities located near the airport. This results in lower lease costs as compared to being on the airport.

The primary service area for cargo represents the area where BDL is the most easily accessed airport using local pickup and delivery trucks. This area includes all of Connecticut and the western half of Massachusetts. The secondary service area is a region within which BDL can compete with both Logan and JFK with the ability for same day pickup and delivery. This area includes all of Connecticut, Massachusetts, most of New Hampshire and Vermont, about one quarter of New York, which is closest to Connecticut excluding New York City and Long Island, and York County in southern Maine. The tertiary service area for BDL includes all of New England, New York, New Jersey and Pennsylvania. (See Figure 2.3)

Figure 2.3 - BDL Cargo Service Area

BDL ranked 37th among U.S. airports in total air cargo for the year 2004, including both air freight (309 million pounds) and air mail. Over ninety-six percent of the air freight is handled on flights by all-cargo carriers, and three-quarters of that traffic moves on flights by the U.S. domestic integrated carriers such as FedEx, UPS, Airborne Express, etc.

Also located at BDL is the 103rd Fighter Wing of the Air National Guard and the 126th Aviation Regiment of the Army National Guard.
BDL is owned by the State of Connecticut and operated by the Department of Transportation, Bureau of Aviation and Ports. It was established as an enterprise fund of the State in 1982. This means BDL relies on its own revenue and not taxes to operate. The surplus in the airport’s operating budget is used to pay obligations and fund reserves required by the issuance of bonds. BDL’s operating budget is set by the ConnDOT and the secretary of the Office of Policy and Management and is not subject to legislative approval.

A seven member Board of Directors, along with the ConnDOT Commissioner, is responsible for a variety of duties including developing an organizational and management structure that will accomplish the goals of BDL and approving the airport’s annual capital and operating budget. The Bradley International Community Advisory Board was created by legislation passed in June 2001 and replaces the Bradley International Airport Commission. It consists of the chief elected officials from Windsor Locks, Suffield, East Granby and Windsor. It provides a vehicle for communications between airport administrators and nearby towns regarding residents concerns, and it advises the Board of Directors on such matters as land use, transportation and planning and zoning issues on land in the vicinity of the airport.

BDL is easily accessible, just 4 miles from Interstate 91 via Route 20, a four lane limited access highway. Other major roads in the immediate vicinity of the airport include Route 75 and Schoephoester Road. The airport is located in the Towns of Windsor Locks, Suffield and East Granby. The Town of Windsor is just to the south of the airport.

The ARC for BDL is D-IV.

The airspace at BDL is designated as Class C. However, two notches have been taken out of the “typical” Class C airspace dimensions for Simsbury and Skylark Airports.

BDL’s air carrier service area was determined by the existence of other airports offering similar types of services as well as travel distances and time. BDL’s service area covers almost all of Connecticut, except Fairfield County, which is served by JFK and LaGuardia, and a few towns along the Rhode Island border, served by T.F.Green, and it encompasses Hampden and Hampshire Counties in south central Massachusetts. This area is depicted in Figure 2.4. Bradley’s general aviation service area was determined to be within a 15 mile radius of the airport. This area covers the greater Hartford area and is shown in Figure 2.5.

Land use to the north and northwest of the airport is predominately forested or cultivated land with some pockets of low density residential development. The area to the southwest and immediately adjacent to the airport is commercial/industrial with forested and cultivated areas and some low density residential land use further to the west/southwest. Land south of the airport has some commercial/industrial areas, low density residential areas, forested and cultivated areas. East of the airport is mainly commercial/industrial land use along with a substantial area of low density housing.
The airport is zoned industrial with industrial and residential zones to the north. West of the airport land is zoned for agriculture and industry with smaller areas zoned for residential and commercial use. Land to the south of the airport is zoned for industry, agriculture and some residences. To the east of the airport land is zoned for industrial, commercial and residential use.

BDL has some FAR Part 77 obstructions. The majority of these obstructions are trees. A vegetation management plan study is underway. An obstruction light is located on Peak Mountain, which is 3 miles northwest of Runway 15.

BDL's economic impact to the region was studied in May of 2005. This study showed that over the next twenty years Bradley will contribute a 20 year average of $34.6 billion to Connecticut's economy and generated 3.8 billion in output and 1.15 billion in personal income in 2004.3

The potential constraints identified for Bradley International Airport include:

- Noise
- Available land for development at the airport
- Environmentally sensitive areas on airport property

2.2.2 Hartford-Brainard Airport - (HFD)

Dedicated in 1921 by Hartford Mayor Newton Brainard, Brainard Airport (HFD) was the first municipal airport in New England. It served as the air carrier airport for the greater Hartford region until about 1950 when the airlines migrated to the new state airport in Windsor Locks. Under state stewardship, the airport grew into its current role as an important corporate destination located immediately adjacent to Hartford's central business district. According to the NPIAS, HFD is classified as a general aviation reliever airport for Bradley International Airport. HFD has three runways and an ATCT. Runway 02-20 is 4,418 feet long with a displaced threshold, on the 02 approach, of 410 feet and on the 20 approach of 559 feet. Runway 02-20 does not meet RSA standards. Runway 11-29 is 2,315 feet long with a displaced threshold, on the 29 approach, of 257 feet. It has the required RSA’s. The turf runway, NE-SW is 2,309 feet long. Services include aircraft maintenance, aircraft storage and tie-downs, and aircraft fueling. There is a proposal under review to construct a technical school offering aviation mechanical training at this airport. The last Airport Master Plan was completed in 1999.

HFD is owned by the State of Connecticut and operated by the Connecticut Department of Transportation. It is situated on 201 acres located in the City of Hartford, and is easily accessible via Interstate 91 or Route 15. Airport users take a clearly marked exit to Murphy Road, and then left onto Brainard Road.

3 “The contribution of Bradley International Airport to Connecticut's Economy" May 2005 - A Department of Economic and Community Development Impact Analysis
The ARC for HFD is B-II. The ARC for Runway 11-29 is B-I. Because runway 11-29 is substantially shorter than 2-20 it has a different ARC than the “overall” airport.

The ATCT is open from 6:00 a.m. until midnight seven days a week. During that time HFD operates as Class D airspace. When the ATCT is closed, HFD operates as Class G airspace wherein the pilots are responsible for reporting their positions and intentions to other pilots.

The service area, which has been determined using a combination of both the isochrone and comparable airport methods described in Section 2.1.4, encompasses entirely or in part, approximately fifty towns. See Figure 2.6 for a delineation of the service area.

The general land use surrounding the airport is primarily comprised of commercial and industrial uses to the west, north and northeast. Along the eastern boundary of HFD is the flood control dike which runs along the western edge of the Connecticut River. Across the river East Hartford is mostly residential. There is a sewage treatment plant immediately to the south of the airport then Wethersfield Cove and the village of Old Wethersfield a short distance to the south.

The City of Hartford zoning map, shown in the HFD 1999 Master Plan, indicates that the airport property is zoned industrial as is the surrounding area. There are no residentially zoned districts within the City of Hartford in the immediate vicinity of the airport. The Town of Wethersfield is located just to the south of the airport and is in the flight path of Runway 2-20. Folly Brook Nature Area and Wethersfield Cove are just south of the airport and are both in the town’s floodplain zone. South of Wethersfield Cove residential zoning is dominant, with business and industrial zones clustered around the Silas Deane Highway (Route 99) corridor.

Objects that penetrate FAR Part 77 surfaces at HFD are primarily trees, the flood control dike and transmission towers. Displaced thresholds exist on three of the four runway ends. Obstruction lights are on the dike and transmission towers, and there is a Vegetation Management Plan study underway. The State of Connecticut and the City of Hartford are working together in an ongoing program to remove approach obstructions on State and City owned lands.

An economic study of Brainard Airport showed that in 1997 the airport generated $37 million to the economy of Hartford and the surrounding communities.4

The potential constraints identified for Hartford-Brainard Airport include:

- Noise – Old Wethersfield
- The site is almost built out with not much room for expansion, due to the river, a sewage treatment plant, and a trash plant
- Existing land uses attract birds, wildlife – (river, trash plant, cove)

4 “The Economic Impact of the Hartford-Brainard Airport" April 1999 - The American Association of Airport Executives
• FAR Part 77 obstructions

2.2.3 Groton-New London Airport - (GON)

The Groton-New London Airport (GON) was established as the First State of Connecticut Airport in 1929. GON is owned by the State of Connecticut and operated by the Connecticut Department of Transportation. It is located within the Town of Groton on 483 acres. There are now two runways, 05-23 is 5,000 feet long and 15-33 is 4,000 feet with a displaced threshold, on the 15 approach, of 307 feet and on the 33 approach of 205 feet. An Environmental Impact Statement (EIS) for Runway Safety Area improvements on Runway 05-23 was completed in April 2004 making way for the permitting process to begin. Because water bodies are so close to the ends of this runway EMAS is being considered as part of the RSA solution. Reconstruction of Runway 15-33 was completed in November 2002. Runway 15-33 has the required RSA’s. There are supporting taxiways, paved aircraft parking ramps, an FAA operated ATCT, an instrument landing system (ILS) and free vehicle parking. For GON the last Airport Master Plan was completed in 1999.

GON has had scheduled commercial service but there are no scheduled flights at this time. GON is listed in the 2001-2005 NPIAS as a commercial service primary, nonhub airport. The airport also has flight training, charter flights, car rentals, and airport maintenance facilities. In addition, the Army National Guard runs an operations and maintenance facility at the airport, providing maintenance for helicopters. Two FBO’s offer avionics and aircraft repair and maintenance. This brings to the area jobs requiring skills in major airframe and powerplant repair. Survival Systems offers water ditching survival training to passengers and crew. A seaplane ramp and landing area was closed in the Fall of 2001.

The primary access route from Interstate 95 to the airport uses Exit 87 onto the Clarence B. Sharp Highway, left onto Rainville Ave., right onto Poquonock Road, High Rock Road, and finally Tower Avenue.

The ARC is C-III; which includes airplanes with an approach speed of up to 141 knots and with wingspans less than 118 feet. Runway 15/33 currently conforms to B-II standards.

GON has Class D airspace when the ATCT is open, which is 7:00 a.m. to 10:00 p.m. daily. It reverts to Class G when the Tower is not in operation.

Because of the proximity of other airports, the services they provide, and the relative size of the two states (Connecticut and Rhode Island), it was concluded in the GON 1999 Master Plan that the comparable airport service area methodology provided the most realistic area from which air passengers for GON were drawn. Figure 2.7 illustrates the service area which encompasses much of southeast Connecticut and a small portion of southwest Rhode Island.
GON is situated on a peninsula surrounded by the Poquonock River to the east and Baker Cove to the South and Southwest. East of the river is Bluff Point State Park which is designated as a Coastal Reserve. Across Baker Cove to the southwest is a peninsula called Jupiter Point, which encompasses a small shorefront community of approximately 40 residences. A section of railroad tracks traverses through the City of Groton, across Baker Cove and along the northwest border of the airport, meeting with the Amtrack rail line north of the airport. Northwest of the airport are a golf course, vacant land, small pockets of office and retail space and some residences. The area to the north of the airport is used for industrial purposes.

The airport is located within the Town of Groton’s zoning boundaries and is zoned light industrial. Outside the airport limits the Town is predominately zoned low density residential. The exceptions are several small pockets of commercially and industrially zoned areas located immediately north and northwest of the airport, which includes a large area zoned for an industrial park approximately two miles northwest of the airport and a large commercially zoned area along Route 184 near Interstate 95. The City of Groton, located west of the airport directly across Baker Cove, regulates and controls its own zoning. The City is zoned predominately low density residential, with large pockets of recreation/open space. Industrial zoned areas are clustered along the Thames River and south of Groton Heights.

The airport is located within the Connecticut Coastal Area Management (CAM) boundary. All property that lies within the coastal boundary is subject to development guidelines and must be reviewed for compliance with the Connecticut Coastal Area Management Act.

The major ground obstructions to the FAR Part 77 surfaces at GON are close-in, including trees and some manmade obstructions. Many of these could be removed with the required permissions. Obstruction lights currently exist on some of these obstructions. There are no recommendations to light any additional objects. A Vegetation Management Plan study and a Wildlife Hazard Management Plan study are underway.

The 1999 AMPU prepared an economic analysis for GON, which determined that the airport generated $167.3 million in 1995 dollars for Connecticut's economy.\(^5\)

The potential constraints identified for Groton-New London Airport include:

- Water surrounds the airport on three sides
- Noise – Jupiter Point residential area
- Incompatible land use
- Wetlands

• Lies within the Coastal Area Management (CAM) Zone

2.2.4 Waterbury-Oxford Airport - (OXC)

Oxford Airport (OXC) is owned by the State of Connecticut and operated by the Connecticut Department of Transportation. The airport is located in the Town of Oxford on a parcel of land totaling 424 acres. The airport is easily accessible by state roads from nearby Interstate 84. OXC was originally planned in the 1960's as a general aviation airport that would service the Naugatuck Valley region with a 3,500 foot main runway. It immediately attracted corporate interest and was actually constructed in 1968-69 with a 5,000 foot precision instrument runway and later a 2,000 foot crosswind runway, which was removed in the late 1990’s to provide additional developable land. An 800’ runway extension (500’ at the 36 end and 300’ at the 18 end) was recently completed resulting in a 5,800’ runway with displaced thresholds of 500’ at the 36 end and 300’ at the 18 end. There are RSAs of 720’ at the 36 end and 920’ at the 18 end.

OXC is located on a hilltop on the Oxford/Middlebury town line, making development difficult and expensive. In spite of this, corporate interest has increased, particularly in recent years. Hangar construction, driven by an increase in based jet aircraft, has accelerated since the 1990's. Numbers of based jet aircraft have increased so rapidly that the forecasts published in the 1995 OXC Master Plan were outdated by 2000.

An updated Master Plan and a Part 150 Noise Study are currently underway, both are expected to be completed by the end of 2006.

In the past, petitions to the FAA for the installation of an ATCT have been denied because the operations did not meet FAA criteria for the establishment of a tower. The State of Connecticut in conjunction with private hanger construction had a control tower built. However, the tower was constructed with the understanding that its operation would qualify for federal funding. The ATCT began operating in May 2002.

The 2005-2009 NPIAS lists OXC as a General Aviation airport.

The ARC for OXC is D-II, however, the draft AMPU recommends this change to D-III. It’s airspace is Class D when the ATCT is open, which is from 6:00 a.m. until 9:00 p.m. daily, and Class E when the tower is closed.

The service area for OXC was taken from the ongoing Airport Master Plan Update. This service area is illustrated in Figure 2.8.

Land use around the airport in the Town of Oxford was mostly industrial with a few residences, but in 2004 the Town rezoned land just south of the airport to permit senior housing. The Larkin State Park Trail is located to the southeast of the airport. There are residential developments to the north of the airport in the Town of Middlebury.
Most of the properties surrounding the airport in the Town of Oxford are zoned for industrial uses. To the north of the airport in the Town of Middlebury, land is zoned residential. This area includes the Triangle Hills development immediately north of Runway 18-36. The proximity of these homes has led to resident complaints about noise, which directly relates to land use incompatibilities.

Obstructions to the FAR Part 77 surfaces at OXC include trees, transmission towers to the south and east, and a hill to the northeast of the airport. There is a Vegetation Management Plan study underway. A private company has a proposal to build a power plant in the Town of Oxford. A Declaritory Ruling has been issued by the Commissioner of Transportation stating that the power plant does not constitute an airport hazard as defined in Connecticut General Statutes 15-34(8) and 15-89. This project is currently not being aggressively pursued by the company. If this project were to move forward the ConnDOT would review new materials to determine the affect of the plant on OXC.

As part of the ongoing AMPU an economic study of the impact of OXC on Middlebury, Southbury, Oxford and the surrounding communities was performed. This study showed that economic impact is $50 million to the economy for OXC.6

The potential constraints identified for Waterbury-Oxford Airport include:

- **Topography** - airport is located on the top of a hill, lacking reasonably flat, developable area
- **Noise** - because of the airport’s proximity to residential development
- **Incompatible land use** - towns should be encouraged to adopt zoning to insure compatibility with airport
- **FAR Part 77 obstructions** - power transmission towers and lines to the south and east of the airport; clearing easements should be acquired near ends of runway

2.2.5 Windham Airport - (IJD)

Originally known as the Willimantic Municipal Airport, Windham Airport was built in 1937 by the Works Progress Administration. In those times of wide runways and few aircraft, apron and storage space was seldom planned for. Windham was no exception, even with relatively modest growth the airport exhausted space for aircraft storage. This required the closure of one of the two longest runways, 06-24, for use as aircraft tie-downs. Windham still maintains two runways, 09-27 is 4,278 feet long with a displaced threshold, on the 09 approach, of 261 feet and Runway 18-36 is 2,797 feet in length with a displaced threshold, on the 36 approach, of 799 feet. None of the runway ends meet the current FAA RSA standards. Services provided at the airport include fuel, airframe repairs, power plant repairs, aircraft hangers, tie-downs, aircraft charter, aircraft instruction, and aircraft rental. The airport is located on 280 acres of land. The Airport Master Plan was updated in 1999.

6 “2006 Draft Airport Master Plan Update" - Appendix E
Windham is owned by the State of Connecticut and operated by the Connecticut Department of Transportation. Vehicle access is provided via Airport Road off of Route 6, which is a major east/west route between Hartford and Providence.

The NPIAS lists Windham as a general aviation airport.

The ARC at Windham airport is B-II.

The airspace surrounding Windham is described as Class G airspace from the surface up to 700 feet AGL and Class E airspace extending upward from 700 feet AGL.

The service area for Windham covers much of Windham and Tolland Counties. This area is shown in Figure 2.9.

The airport is bordered on the north by the recreational area and public water supply of Mansfield Hollow Lake and State Park with its accompanying dam. To the northwest is the Willimantic Reservoir and public watershed lands. To the west and southwest are residential neighborhoods dominated by mobile homes, as well as the Route 6 bypass. Immediately west of Stonegate Manor, the mobile home park adjacent to Runway 18-36, are gravel mining operations. Just to the south of the airport, running roughly northeast to southwest, is Route 6.

The land use on the north side of Route 6 in the vicinity of the airport is commercial strip development, the town highway yard and garages and transfer station, a light manufacturing facility, and a school. The land use on the southerly side of Route 6 consists of some residential and commercial development with growing retail development.

The airport and its environs, located in the Town of Windham, fall into the General Commercial/Industrial District zone where airport related uses are permitted. All building permit applications within the approach envelope are referred to the FAA for building height approvals. In the Town of Mansfield the areas nearest the airport that are outside the flood hazard zones fall primarily into four zones, rural agricultural residential, residential, planned business and institutional. The institutional zone is occupied by the Route 6 bypass.

Windham has some FAR Part 77 obstructions. The majority of these obstructions are trees and the airport has displaced thresholds for Runway 36 and Runway 9 because of them. A Vegetation Management Plan study is underway. Other obstructions include utility poles along Route 6 and the Mansfield Hollow Dam and its dike to the north and east of the airport which are identified by obstruction lights.

As part of the 1999 AMPU, an economic impact study was prepared for Windham Airport. This study determined that Windham Airport is a major factor in the economy
of Windham and its surrounding community creating an economic impact of $9.8 million in 1997.\(^7\)

The potential constraints identified for Windham Airport include:

- Noise - based on proximity of residential development
- Incompatible land use
- Wetlands
- Currently accessible property is nearly built out
- Inaccessibility to airport property that could be used for expansion (a project is currently underway to provide access to the northerly side of the airport)
- FAR Part 77 obstructions

2.2.6 Danielson Airport - (5B3)

Danielson Airport is the smallest of the six State owned airports. The airport is managed by the Connecticut Department of Transportation, Bureau of Aviation and Ports. It has a single 2,700 foot runway which has the required RSAs. Built in 1963, the airport was designed to complement the Harvard Ellis Regional Technical School. This school is one of two facilities in Connecticut providing aviation mechanics training, there is a proposal under review to relocate this training to a new facility at Hartford/Brainard airport. The other school is at Sikorsky Airport in Stratford. Other services offered at Danielson include; fuel, repair and maintenance, charter flight training, and parachute jumping. There is also a proposal for a new restaurant. An Airport Master Plan is underway for Danielson.

The airport has seen multi-engine charter and small business use. However the instrument approach limitations and the lack of corporations in the area using larger aircraft has put plans for the runway extension recommended in the last Airport Layout Plan (ALP) on hold.

Danielson Airport, located in the Town of Killingly on 257 acres of land, is accessible via Williams Road off Maple Street just north of the airport.

The ARC for Danielson Airport is A-I. The airspace is designated Class E.

The NPIAS designates Danielson Airport as a general aviation airport.

The service area is made up of some of the towns in Windham County and extends into the neighboring states of Massachusetts and Rhode Island as shown in Figure 2.10.

\(^{7}\) "The Economic Impact of the Windham Airport" July 1999 - American Association of Airport Executives.
The airport is bounded on the south by residential development, and on the west by the Quinebaug River. Land west of the river is in the Town of Brooklyn where there are a few residences. North of the airport is Williams Road which dead ends at a wooded area, and to the east is Maple Street, both residential streets, and Harvard H. Ellis Technical School. Directly across from the airport is the Maple Courts senior citizens housing complex. Most of the land surrounding the airport property is low density residential development, forest and fields.

The land occupied by the airport is zoned for low density development and the land surrounding the airport is residential and undeveloped. Land in the Town of Brooklyn directly across the Quinebaug River from the airport is zoned residential/agricultural.

FAR Part 77 obstructions include trees. A Vegetation Management Plan study is underway.

The potential constraints identified for Danielson Airport include:

- Instrument approach limitations
- Rural location
- Incompatible land use
- Inadequate Runway Length

2.3 Municipally Owned Airport Facilities

2.3.1 Tweed-New Haven Regional Airport - (HVN)

Tweed-New Haven airport opened in 1931 as The New Haven Municipal Airport. It was later renamed Tweed-New Haven after it’s first airport manager. Regular passenger service began shortly after the airport opened and continued throughout the 1940’s and 1950’s. With changes in the airline industry and the arrival of jet aircraft, passenger service has become consolidated at other larger airports. Today Tweed-New Haven serves South Central Connecticut as a scheduled service and active general aviation airport. It is identified in the NPIAS as a commercial service primary non hub airport. The airport is located on 394 acres and has two runways. Runway 02-20 is 5,600 feet long with a displaced threshold, on the 20 approach, of 349 feet. This runways RSAs do not meet the minimum standards and a study is under way to determine the best way to improve the situation. Runway 14-32 is 3,175 feet long with a displaced threshold of 367 feet on the 14 approach. This runway does meet FAA minimum standards for RSAs. Taxi service, flight instruction and aircraft maintenance are available at the airport.

The airport is located in both the City of New Haven and the Town of East Haven and is owned by the City of New Haven. However, with the passage of Public Law 97-271 the Connecticut General Assembly created the Tweed-New Haven Airport Authority, which became effective July 1, 1997. The Authority assumed responsibility for the Airport’s
operation and management on July 1, 1998. Under state authorization, the City of New Haven made nine appointments, the City of East Haven made two and the South Central Regional Council of Governments made three appointments to the 14 member board. The Authority represents a broad spectrum of interests, from the surrounding towns to the corporate world to institutions such as Yale University and Yale-New Haven Hospital. The charge of the Authority was to transition the airport from operating as a city department to an airport authority independent of the city. The Authority hopes that this change will result in greater efficiency, the elimination of an operating deficit, and facilitate capital improvements and new jet service to the region. The Authority has selected AMPORTS Aviation Group to manage and operate the airport on a daily basis. The Airport Master Plan for HVN was last updated in 2002.

The airport is accessible by several local roads that traverse primarily residential neighborhoods. The airport is located approximately two miles south of Interstate 95.

The ARC for Tweed-New Haven is C-III. The ARC for Runway 14-32 is different than the rest of the airport. The runway length and current noise abatement program, prevents the use of Runway 14-32 by jet aircraft. Only smaller planes can use it, therefore its ARC is B-II.

The airspace for Tweed-New Haven airport is Class D when the ATCT is open daily from 6:00 a.m. to 10:00 p.m. and Class E when the tower is closed.

The commercial service area for Tweed-New Haven airport consists of most of New Haven County, and portions of Middlesex and New London Counties, see Figure 2.11. The general aviation service area encompasses southern New Haven County and is shown in Figure 2.12.

Most of the land around the airport is fully developed. The predominant land use is single family residential, with some areas of commercial and industrial use. An industrial park (East Haven) abuts the airport to the southeast. Lighthouse Point Park (New Haven) recreational area is to the southwest. There are also undeveloped areas including wetlands to the south of the airport.

The City of New Haven, as proprietor of HVN, has a noise control ordinance which states that the goal for aircraft noise abatement shall be to reduce the area within the residential community that is exposed to aircraft noise in excess of 65 Ldn. This is to be done by implementing noise abatement actions that do not shift the noise from one community to another and does not inappropriately curtail airport operations. Such actions include reducing the maximum noise level (dBA) allowed for takeoffs and landings during the hours of 10 p.m. to 7 a.m. and designating certain areas for engine run-ups.

Zoning classifications are generally consistent with existing land uses. Zoning districts within the New Haven portion of the airport include airport, business, residential and
park land. Zoning districts within the East Haven portion of the airport include residential and light industrial.

The airport is located within the Connecticut Coastal Area Management (CAM) boundary. All property that lies within the coastal boundary is subject to development guidelines and must be reviewed for compliance with the Connecticut Coastal Area Management Act.

Both FAA policy and the grant assurances signed by the Airport Authority require the airport to actively work to resolve the non-compatible land use issues in the vicinity of the airport, which is an on-going process.

There are numerous penetrations of various types to the FAR Part 77 imaginary surfaces around Tweed-New Haven. There is a hill northwest of the airport. Runway 20 and 14 thresholds are displaced due to penetrations to the approach surface. The airport is in the midst of an on-going program of obstruction removal, the focus of which is concentrated on the removal of vegetation, both on and off the airport.

During the AMPU in 2002, an economic analysis was performed to determine Tweed-New Haven Airports impact on the economy of New Haven County. "In present value terms (2001 dollars), Tweed-New Haven Airport will contribute $602.41 million in gross regional product to the New Haven County economy under the Status Quo Scenario, and $2.249 million under the Development scenario, in aggregate through 2019." This is equivalent to an average yearly impact of $37.6 million per year for the Status Quo and $140.6 million per year for the Development Scenario.

The potential constraints identified for Tweed-New Haven Airport include:

- Noise
- Need for better commercial service vs. neighborhood concerns
- Access – local roads through neighborhoods
- Incompatible land use
- FAR Part 77 obstructions
- Wetlands
- Lies within the Coastal Area Management zone
- Located in two towns that have differing views on the role of the airport

2.3.2 Igor I. Sikorsky Memorial Airport - (BDR)

The Igor I. Sikorsky Memorial Airport (BDR) lies on an 800 acre parcel of land, some of which is partially reclaimed salt marsh, entirely in the Lordship section of the Town of Stratford. It is owned and operated by the City of Bridgeport and has suffered from the

8 "Tweed-New Haven Airport: An Economic Impact Analysis" February 2002 - University of Connecticut, Connecticut Center for Economic Analysis
political division of ownership and location. Scheduled air service was suspended in 1999. The near term strategy for BDR is to encourage corporate use while maintaining the potential to restore scheduled service when demand requires it. Tenants and activities at the airport include an ATCT, aircraft storage, two flight schools, an aircraft management company, a FAA Flight Service Station, and an airframe and power plant mechanic's school. Runway 06-24 is 4,677 feet long with a displaced threshold, on the 24 approach, of 320 feet and Runway 11-29 is 4,761 feet long with a displaced threshold, on the 29 approach, of 364 feet. RSAs at the ends of three of these runways do not meet FAA standards, (see Table 2.3) studies are underway to determine the best way to remedy this situation. Part of a possible solution for runway 06-24 may include moving a road away from the 24 end of the runway. Convenient access to BDR is provided via Interstate 95, and Route 113.

BDR is primarily a general aviation airport accommodating a significant amount of corporate activity. It also handles some regional-type charter service. BDR competes with Tweed-New Haven and Westchester County (New York) Airports for corporate activity. In the 2005-2009 NPIAS, BDR is categorized as a general aviation airport. An Airport Master Plan Update was completed in 1995.

The ARC for Sikorsky is C-II.

Sikorsky’s airspace is classified as Class D when the ATCT is open from 6:30 a.m. to 10:00 p.m. and Class E when the tower is closed.

BDR service area for general aviation is rather small because of the close proximity of competing general aviation airports. See Figure 2.13 for the delineation of this area.

Land use in the immediate vicinity of BDR is a mix of industrial, residential, and commercial, with open spaces lying adjacent to the Great Meadows. North of the airport is industrial and commercial land use and Frash pond, to the south and east is residential (Lordship Neighborhood), and the Housatonic River, to the west is the Great Meadows Tidal Wetlands area which has a walkway and 2 viewing platforms for bird watching and fishing. Further west in an industrial area there is a stack approximately 500 feet high that is located 13,650 feet off the approach end of Runway 11 and 300 feet off the runway centerline. The airport is located within the CAM boundary. All property that lies within the coastal boundary is subject to development guidelines and must be reviewed for compliance with the Connecticut Coastal Area Management Act.

FAR Part 77 obstructions include trees, power lines and poles, structures, smoke stacks, and a blast fence.

An update to Sikorsky's Airport Master Plan was completed in 1995, as part of this plan, an economic analysis was prepared which determined the Airports economic impact to the Towns of Stratford, Bridgeport and the surrounding communities. The impact was determined to be $58.5 million (1993 dollars).^{9

^{9} “Sikorsky Memorial Airport Master Plan Update” 1995
The potential constraints identified for BDR include:

- Noise
- City owned and operated airport, but located entirely in a different town
- Construction of runway safety areas
- FAR Part 77 obstructions
- Incompatible land use
- Wetlands
- Airport is in the Coastal Area Management zone

2.3.3 Danbury Municipal Airport - (DXR)

Danbury Municipal Airport is located in the town of Danbury on 248 acres of land. It is one-mile southwest of Interstate 84. Access from the highway is provided by State Route 7 connecting with Sugar Hollow Road. The airport is owned and operated by the City of Danbury and is staffed by municipal employees. The City has an Airport Commission which is the governing body that develops all airport rules and regulations. An Airport Administrator oversees the overall operation of the airport. There are two runways, 08-26 is 4,422 feet long and has displaced thresholds of 368 feet on the 08 approach and 734 feet on the 26 approach, and Runway 17-35 is 3,135 feet long with displaced thresholds of 223 feet on the 17 approach and 231 feet on the 35 approach. Both of these runways meet FAA standards for RSAs. The airports attraction to corporate operators is generally limited to those using smaller aircraft due to runway length and instrument approach limitations. Danbury Airport updated its Airport Master Plan in 1996.

In past years, Danbury was among the busiest airports in the state due largely to flight training activity. This activity can generate very high peak hour counts and made the airport very busy during good weather. This justified a FAA ATCT that was subsequently contracted out to a private company. The presence of air traffic control enhances the operating safety of the airport, especially where corporate operations are mixed with slower general aviation aircraft. In addition to the tower the airport has a maintenance building, itinerant aircraft apron, numerous FBO’s and several tenants that provide aviation services. Several of these tenants provide “through-the-fence” operations at the airport. In other words the tenant does not reside on airport property but has access to the airport.

The NPIAS identifies Danbury as a Reliever Airport. It is a reliever for Westchester County Airport in White Plains, NY.

Danbury currently has an ARC of B-II.

Danbury Airport’s airspace is defined as Class D while the tower is in operation (7:00 a.m. to 10:00 p.m.) and Class E all other times.
Danbury’s service area includes portions of Fairfield, Litchfield, and New Haven Counties in Connecticut, and Duchess, Putnam, and Westchester Counties in New York State. See Figure 2.14.

The airport is bounded by Backus Avenue to the north and west, State Route 7 to the east, and Miry Brook Road to the south. Much of the land use along Backus Avenue is commercial development. Predominate land use to the south of the airport is residential. There is also some commercial and industrial development along Miry Brook Road. This development is mainly the FBOs located along the periphery of the airport. Land use along Route 7 to the east is a mix of commercial and residential development. Areas to the west are predominantly residential. The Wooster School, a private institution, is also located just west of runway 08.

Zoning around the airport corresponds closely to the existing land uses for these areas. The airport is in a light industrial zone where it is a permitted use. Light industrial is the predominant zoning to the northwest, north, east and southeast of the airport. The Danbury Fair Mall and area to the west is zoned general commercial. Single family residential zoning is located to the south and west of the airport.

The City of Danbury has defined an overlay zoning known as the Airport Protection District (APD). The purpose of this zoning is to reduce hazards that may endanger the lives and property of users of the airport as well as the surrounding communities. The APD encompasses the FAR 77 approach and transition surfaces associated with the runways and states that the height of any structure or tree shall not extend above these surfaces unless the Town’s Planning Commission grants a special exception. At the present time there is a problem with trees protruding into the approach surface of runway 8. A threshold siting study was prepared to address this issue. This study reviewed which actions could be taken to remove obstructions to the approach surface for runway 8 to maintain the runway at its present length. It was determined that a combination of obstruction (tree) removal on Town owned land and select locations on the Wooster School grounds, as well as the lighting of obstructions on Town owned land would be adequate to keep the thresholds at their present locations.

The potential constraints identified for Danbury Airport include:

- Noise – Town of Ridgefield residents
- Limited development space
- Vertical obstructions – FAR Part 77
- Incompatible land use
- Wetlands – identified on-site

2.3.4 Meriden-Markham Municipal Airport - (MMK)

The Meriden-Markham Municipal Airport was initially constructed in 1928 as a turf strip with limited terminal facilities. It was paved in 1958 to a length of 2,100 feet oriented as
runway 18-36. The existing administration building and adjacent hangar were constructed in 1946. A partial parallel taxiway was constructed in 1963 and the runway was lengthened to its present 3,100’. RSAs for this runway meet FAA standards. Other improvements include obstruction removal and relocation of power lines on the south side of the airport. In the spring of 2005 the airport was closed for several weeks in order to facilitate the reconstruction of the runway.

The airport is located on 137 acres in the towns of Meriden (11 acres) and Wallingford (126 acres). It is owned by the City of Meriden and its operations, maintenance and management are overseen by an appointed Meriden Aviation Commission. This commission is a volunteer organization that obtains staff support from City departments. Meriden Aviation Services, the fixed base operator, manages the day-to-day operations and shares in maintenance responsibilities with the Commission/City. The Commission recommends policies to the Meriden City Council, which has the ultimate authority and responsibility for the airport. This organizational arrangement is not uncommon at general aviation airports. The Airport Layout Plan report for Meriden-Markham was updated in 2000.

Vehicular access to the airport is via Evansville Road from areas in Meriden north of the facility, and Hanover Street from areas to the south in Wallingford. The road is continuous with a name change at the city/town line.

The NPIAS classifies Meriden-Markham as a general aviation airport.

Currently this airport has an ARC of B-I. However, the potential to accommodate larger aircraft exists due to adequate runway length and a straight-in instrument approach. Community acceptance and sponsor support have also been positive. Even if a large corporate user were to appear, the airport would likely be limited to turboprop aircraft due to terrain and residential proximity.

The airspace for Meriden-Markham Municipal airport is Class E.

The service area consists mainly of the neighboring towns. It includes the towns of Cheshire, Meriden, Wallingford, Middlefield, Middletown, Cromwell, Durham and portions of Southington, Berlin, Hamden, and North Haven (see Figure 2.15).

There are residences just to the north of the airport. There is also a school approximately ¼ mile north of the airport. A sewage treatment plant, commercial development and a landfill are located to the east, power lines and forest to the south with residences beyond that, and forest and a nursery to the west.

Airport zoning does not exist in either town and the Airport is a nonconforming use. Within the City of Meriden, portions of the airport are zoned commercial and manufacturing. The Town of Wallingford zones the airport land as residential. Consequently, when improvements are proposed at the Airport, they require approval action from one or both of these governments.
Obstructions to the imaginary surfaces are primarily existing terminal buildings that are planned to be removed, and poles located off airport property that are either currently lighted or recommended to be lighted.

During the update of the airports layout plan study and economic impact analysis was performed. This analysis determined that Meriden-Markham Airport has an economic impact of $5.4 million on Meriden, Wallingford and the surrounding community.

The potential constraints identified for Meriden-Markham Airport include:

- Noise – homes nearby
- Incompatible land use
- Located in two towns
- Access – Local road
- FAR Part 77 obstructions

2.4 Privately Owned Facilities Open to the Public

These airports, for the most part, serve private pilots who fly smaller aircraft. The service area depends on the personal preference of the pilot as to how far they are willing to travel to get to an airport and what services they require if there are several airports in their area, therefore, no specific area is delineated.

The airports are primarily used by smaller aircraft because the length of their runways prohibit use by larger planes. These facilities typically have an approach speed of category B or lower, with a design group of II or lower. They all have Class E or G airspace.

As in the case of nearly every privately owned airport in Connecticut, the financial strain of maintenance and capital improvements to the airside facilities threatens their continued operation. Also with increased property values owners may determine that the property is more valuable to them as another use.

2.4.1 Chester Airport - (3B9)

Chester Airport is a privately owned facility located in a research and light manufacturing zone in the southern part of the Town of Chester. This zoning permits both single-family residential and research and light manufacturing uses. When the previous system plan was written, none of the land was used for manufacturing. Since that time, a company engaged in light manufacturing located its plant immediately east of the airport and made a business decision to purchase and operate the airport.

The Town of Chester has maximum height restrictions in effect, which restrict the height of hazards in the approach zone. In addition, other regulations prohibit excess noise
levels that might be offensive or obnoxious. This may preclude regular jet traffic, but there are two fixed-wing twin turboprops and three turbine helicopters based there.

The airport has one runway, 17-35, which is 2,566 feet long and has a displaced threshold, on the 17 approach, of 559 feet. It has an active flight school, charter service, and provides maintenance. The airport has one of the most extensive networks of hangers in CT and all airplanes are stored in hangers.

2.4.2 Goodspeed Airport and Seaplane Base - (42B)

The Goodspeed Airport lies in the town of East Haddam on a narrow flood plain between the Connecticut River and sharply rising terrain to the east. The airport is a permitted use within a residentially zoned area; however, the town land use administrator indicated that the town's intention is to rezone the airport land to commercial with an airport as a permitted use. This would be consistent with the abutting commercial zone to the north. The land under the approach to runway 32 is open space owned or controlled by easement by various agencies including Connecticut Department of Environmental Protection Agency (DEP) and the East Haddam Land Trust. Due to the light aircraft that currently operate at the airport noise does not seem to be an issue. The Connecticut River is to the west of the airport with woods to the south.

Goodspeed’s runway, 14-32 at 2,120 feet, is slightly shorter than the current state standard for commercial airports, but is grandfathered under the previous standard. Goodspeed is the only seaplane training facility in Connecticut and has the largest designated waterway (4,500 ft. by 1,000 ft.) in the state. The aviation utility of the waterway is impacted by extensive boat traffic during the summer months.

2.4.3 Ellington Airport - (7B9)

Ellington Airport is a small privately owned airport accommodating primarily smaller single engine aircraft, although light twin engine aircraft have been based there in past years and parachuting operations have often used multi-engine piston aircraft. The airport features an aircraft repair station, a helicopter flight school and one of the largest parachute schools in the northeast. An ultra-light aircraft manufacturing plant abuts the airport to the south. There is one runway 1-19 that is 1,800 feet long.

The airport is located in the Town of Ellington in an area zoned exclusively for industrial use. The previous system plan notes no non-conforming land use immediately adjacent to the airport, but the industrial area itself is almost completely surrounded by residential zoning that is almost completely developed as single family residences. The exception is a multi-family development on the runway centerline approximately 1,000 feet to the south. These factors limit the attractiveness of the airport to corporate use as large or fixed-wing turbine aircraft would probably generate community complaints even if the runway were lengthened to accommodate them.
The Town of Ellington plans to encourage industrial development in the vicinity of the airport by upgrading utilities including sewer service and considers the presence of the airport generally supportive of that goal. Ellington, like several other small airports, is seeking to add value to the airport users and the community before developmental pressures result in some alternative land use for the site.

2.4.4 Skylark Airpark - (7B6)

Skylark Airpark is located in the Warehouse Point section of East Windsor and is zoned for agriculture and manufacturing. Most of the area next to the airport is wooded, with a few residences. The sparse residential density has generated no noise complaints.

There is one runway, 10-28 which has a published length of 2,642 feet and displaced thresholds of 600 feet on the 10 approach and 175 feet on the 28 approach. The airport has been expanded several times in the past and is now approaching its current capacity of seventy based aircraft. Airport management indicates that the capital cost required to meet demand is progressively less cost effective without public assistance. The airport has been a family endeavor for many years and offers aircraft storage, flight instruction and miscellaneous activities such as ballooning and banner towing.

This airport is on the perimeter of Bradley International Airport’s (BDL) airspace and requires a "notch" in BDL’s class C airspace to operate in the immediate vicinity without BDL tower control.

2.4.5 Robertson Airport - (4B8)

Situated in the town of Plainville, and named for its original owner, Sanford Robertson, the airport was purchased by a large construction firm, Tomasso Brothers, Inc., with the capital resources to expand and improve the facility. Approximately 100 aircraft are based at the airport according to FAA records. The airport is situated on 39 acres of land, which is fully utilized and has no expansion potential without additional land acquisition. Although a single-family residential neighborhood abuts the west side of the airport, most of the remaining immediate surroundings are not noise sensitive.

The FBO at Robertson offers a full range of services including advanced flight training, aircraft sales, multi-engine rating, airframe and powerplant repair and Jet A fuel. It has one runway 2-20 that has a length of 3,612 feet.

Robertson is currently designated in the NPIAS as a reliever airport for BDL, this would qualify the airport for federal participation in capital improvements. The airport owner has chosen not to participate in the federal program and, being privately owned, it is not eligible for state funding.
2.4.6 Simsbury Tri-Town Airport - (4B9)

Simsbury Tri-Town Airport is located in the Town of Simsbury five miles west of BDL and requires a "notch" in BDL's class C airspace to operate in the immediate vicinity without BDL tower control. The Simsbury airport's runway 3-21 is 2,205 feet long, with a displaced threshold at the 21 end of 270 feet, and supports light general aviation traffic without impacting air carrier activity at BDL.

Services provided at the airport include aircraft fuel, hangars and tie-downs. Simsbury is designated as a general aviation airport in the 2005-2009 NPIAS.

Unlike most other airports, Simsbury is operated by a flying club. The airport also has a grass landing area for aircraft types that are better suited to such a landing surface such as ultra-lights and tail-wheel aircraft that are especially sensitive to crosswinds.

2.4.7 Mountain Meadow Airstrip - (22B)

This airport was closed as of April 1, 2004.

A major complication that eventually brought about the demise of this airport was the ownership situation. The former airport operator owns the apron, hangars, and operations area on the Harwinton side. The portion on the Burlington side, which includes the runway, was owned by the proprietor of the Hogan Orchard who died without written instructions regarding the disposal of the airport land owned by him. This portion of the airport was bought by an investor who, after several years, and substantial capital investment, imposed a large increase in the annual rent. The group of pilots at the airport who rented and managed the runway declined to pay it. The airport was subsequently closed.

The Towns of Harwinton and Burlington decided it might be beneficial for them to have an airport nearby. They proposed hiring a consultant to do a feasibility study to gather all the pros and cons of owning and operating an airport at that location. The owners of the Burlington portion of the airport were adamantly against it being reopened as an airport and stated they would refuse to sell the property to the Town. The Town does have the option of eminent domain but the townspeople must approve the acquisition. Burlington held a referendum in September 2004 and the townspeople voted against doing the study and against taking the property by eminent domain, thus sealing the fate of Mountain Meadow airport.

Since this airport closed during the writing of this CSASP it has been decided to leave the information below that describes the airport even though it is not part of the system anymore. The closure of this airport has had a small effect on the state system. Because there was a relatively small number of based aircraft they can be absorbed without a large impact to surrounding airports. But because it is becoming more costly to operate an
airport and some have ownership issues, this could, and probably will, happen again. Each time Connecticut loses an airport it has some impact on the system and the cumulative impact eventually will have a much bigger effect on the entire state system. The largest impact of the closure of Mountain Meadow was that Connecticut lost its northwestern most public use airport. Since the last system plan, four airports have closed.

Mountain Meadow airport was located in both the towns of Harwinton and Burlington, atop Johnnycake Mountain at an elevation of 1,020 feet. The airport itself was zoned industrial in both towns and the Bristol Water Company owns most of the land to the south. The remainder of the surrounding land is zoned residential in both towns and actual development is occurring on property immediately to the north of the airport property.

The airport had 23 based aircraft. It had a 3,420 foot runway designated 01-19 with a displaced threshold of 150 feet on the 19 approach. The revenue from its modest activity supported only minimal maintenance, the question of financing major improvements was unanswered. For example, the grounds maintenance was accomplished primarily by volunteers from the local flying club. The ownership issue worked against this airport for funding for capital improvement projects as well. A key requirement to be eligible for state or federal funding is that there must be a single owner of title, but because neither owner was successful in uniting the property it was ineligible for this funding.

This airport was listed in the 1998-2002 NPIAS as a Reliever. However, in the 2001-2005 and the 2005-2009 NPIAS it has been designated as a general aviation airport. This is due to changes the FAA has made in the criteria for a reliever airport.

2.4.8 Woodstock Airport - (64CT)

Located in the Town of Woodstock, land use immediately adjacent to the site includes residential, agricultural, commercial and a private school. The airport was opened in the 1930’s and has been owned and operated by the same person since 1953, apparently a record for a commercial airport in Connecticut. Runway 01-19 is 2,200 feet long with a displaced threshold, on the 19 approach, of 200 feet. Major and minor airframe and powerplant repair is available. There are 18 based aircraft. As is the case of nearly every privately owned airport in Connecticut, the financial strain of maintenance and capital improvements needed to the airside facilities threatens continued operation.

2.4.9 Waterbury-Plymouth Airport - (N41)

The Waterbury-Plymouth Airport, previously known as the Mount Tobe Airport, is believed to be one of the earliest airmail stops in Connecticut with service dating back to 1923, an era of considerable aviation development in Connecticut. As highway
development made such small mail stops uneconomical, the airport became another of many grass fields which, so far, has escaped alternative development.

There are two intersecting turf runways. Runway 2-20 is 1,600 feet long and 17-35 is 2,005 feet long. This airport is surrounded by large tracts of undeveloped land making it an ideal location for general aviation activities. There is some glider activity here. Most of the surrounding land is owned by the State except for a scout camp that is located on the east side of the airport.

2.4.10 Griswold Airport - (N04)

The Griswold Airport lies adjacent to transitional salt marsh on the west shore of the Hammonasset River in the Town of Madison. Once a popular fly-in location for beach goers, the airport now has approximately ten based aircraft, and is closed to transient traffic unless they have obtained prior permission. There is one runway, 6-24, which is 1,863 feet long. There is ultralight activity in and around the airport. The current owner has been sympathetic to the based aircraft owners, but has the property for sale, offering the remaining pilots first right of refusal. Property values in this area make this land more valuable to the owner as some other use.

Alternatives including private or state purchase have been investigated, but as a transportation facility, there currently is no funding that would enable the state to acquire the property for airport purposes.

2.4.11 Toutant Airport - (C44)

The Toutant Airport, known at the time of the previous system plan as The Campert Memorial Airport, is located in West Woodstock. The surrounding land is almost completely undeveloped except for some homes and cottages at Lake Bungee to the west.

Although the airport has a commercial license, it is currently operated more like a restricted landing area in that the only identifiable traffic is generated by the owner's airplane and helicopter, and no services are available. The airport meets Connecticut commercial standards and is therefore a potentially viable public airport should future demand materialize. It has an asphalt runway oriented at 17-35 and is 1,756 feet long.

2.4.12 Candlelight Farms Airport - (11N)

These facilities are located on the western border of the Town of New Milford between the north end of Candlewood Lake and the Housatonic River. The airport land is zoned for airport use, but the surrounding area is zoned for residential.
Airport use is seasonal with extensive glider activity in warmer months. The runway surface is turf oriented at 17-35 and 2,900 feet long. As a result the airport is closed to transient traffic in the winter. Antique and vintage aircraft, and glider and tail-wheel aircraft instruction are the primary attractions since there is no repair station at the airport.

2.4.13 **Salmon River Airfield - (9B8)**

Aviation use began as a seasonal field on the Lesniewski farm in the Town of Marlborough. The farm was later sold to Joseph Somers and became Somers Airport. Today the airport is operated by the Salmon River Airfield Association, which consists of property owners who surround and abut the airfield. This form of airport ownership, sometimes called an "airport condominium", is more common in southern states; this is the only example in Connecticut. There is one turf runway, 17-35 which is 2,000 feet long. It is closed to transient traffic from December 15th to April 15th each year.

Like the Toutant Airport, Salmon River serves its based aircraft community and offers no services to transient aircraft, even though the airport is licensed commercial. This method of airport management may limit the public benefit, but it ensures financial stability which is lacking for several of Connecticut's smaller airports.

2.4.14 **Stonington Airpark - (CT80)**

There was a commercial airport at this location for many years prior to 1947 when operations were discontinued. In 1979 the airport reopened as Stonington Airpark. It was listed in the previous System Plan as a Restricted Landing Area (RLA). The owners of the airport found that restrictions listed for a private airport were not compatible with the planned operation of the area, therefore in 1982 they applied to the DOT for a change in classification of the airport from RLA to commercial. The Stonington zoning permit approved the use as a commercial airport with restrictions. These restrictions included limiting the hours of use, based aircraft must belong to the businesses located at the airport with a maximum of 10 allowed on the field, and no flight schools, touch and go movements, parachutists, jets, helicopters and seaplanes were to be allowed. These restrictions were to be controlled by the Town. This airport was to serve its based aircraft business community and did not plan to offer any services to transient aircraft even though it is licensed commercial. It has one turf runway, 04-22, which is 1,700’ long.

At this time there is no traffic at the airport. The owners of the airport are looking into other possible uses for the property therefore the future of this facility is uncertain.

2.5 **Closed Airports**

Since the previous system plan was published, four public use airports have closed. The most recent was Mountain Meadow Airport, in the Towns of Burlington and Harwinton,
which closed April 1, 2004. The others were in the towns of Ansonia, Waterford, and Griswold. Since system stability is important, especially if public dollars are invested, a brief discussion of why these airports closed is in order.

The following factors affecting the viability of any transportation facility apply to airports; the first two are internal the second two are external:

* Economic viability (return on investment compared to other investments or land use)
* Commitment of owner/manager to aviation use
* Incompatible adjacent land use
* Benefit perceived or documented by the larger community

Here in Connecticut suburban residential development has put increasing pressure on land intensive uses in rural areas such as farms and airports. Weakness in any one or more of the above factors will endanger the aviation use of the property.

Mountain Meadow Airport, which closed in April of 2004, is discussed at length in section 2.4.7 of this document.

The Ansonia Airport was one of the oldest in Connecticut and possibly the country. It was not on a very large tract of land since early aircraft only required short runways. Ultimately, residential encroachment and the inability to expand to accommodate newer aircraft overwhelmed the field.

The New London-Waterford Airport provided a full range of services including flight instruction, charter service, seasonal scheduled service to off shore points, and airframe and power plant repair. Services provided by the airport and management commitment were strong, unfortunately the land was owned by a third party who anticipated a shopping center development at this location. The result is that the airport closed, the fixed base operator moved his business to an out of state airport, the shopping center developers built on another site and the land remains vacant to this day.

The Lakeside Airport was part of a family-owned tract of land on the north end of Pachaug Pond in Griswold. The land was subdivided by the owner into lakeside lots which allowed incompatible residential use adjacent to the airport. It also prevented the airport from controlling obstructions in the runway approaches. At the time of the last system plan there were 14 based aircraft, a busy aircraft repair station and an aircraft paint shop at the airport. Business deteriorated and the airport management was no longer able to meet commercial criteria for state licensing.

In each of the above cases problems with one or more of the longevity factors sited above contributed to airport closure, but the value of the airport to the air transportation system was not considered. This suggests that the market alone may not be the best measure of the benefit of a particular airport to the state system.
2.6 **Restricted Landing Area Airports (RLAs)**

In Connecticut there are 32 airports and 6 seaplane bases, known as Restricted Landing Area Airports (RLAs) which are for private use only. Although they contribute access to airspace, their affect is varied.

In the previous System Plan there were 48 RLAs. This System Plan has 38 RLAs. Their significance varies. Rentschler Field, owned by United Technologies, (Pratt & Whitney) in East Hartford was the largest facility. The State looked into purchasing the airport but that never materialized. A portion of what was the runway area is now used for other purposes.

With few exceptions the size and character of Connecticut's public airports were originally similar to many of the RLAs. In the 1920’s when local airports were established in great numbers, short turf runways were the norm. This suggests that our RLAs might be regarded as seeds from which public service airports may grow as happened in the past. The same four factors sited for privately owned public use airports apply to RLAs and play a large role in determining which airports flourish, languish, or close.

A survey was conducted to discover more about the facilities and activity at the RLAs. Comments were invited regarding limitations to continued operation and future plans. Of the 26 survey responses, 14 cited trees as an obstacle and 2 stated they would like lighting added at their facility in the future. Table 2.5 summarizes the information available for RLAs including the survey information.

The locations listed in Table 2.5 may be regarded as the only feasible opportunities to develop a public landing area due to the great difficulty in establishing a new airport.
<table>
<thead>
<tr>
<th>AIRPORT NAME</th>
<th>TOWN LOCATION</th>
<th>RUNWAY ORIENTATION</th>
<th>RUNWAY DIMENSIONS</th>
<th>HANGAR/ TIEDOWN Y/N</th>
<th>RUNWAY LIGHTING Y/N</th>
<th>ESTIMATED OPERATIONS FOR 2000</th>
<th>NO. OF YEARS AIRPORT HAS BEEN OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bancroft</td>
<td>East Windsor</td>
<td>13-31</td>
<td>2,000’ x 100’</td>
<td>turf</td>
<td>Y/N</td>
<td>Y</td>
<td>100</td>
</tr>
<tr>
<td>Buell Farm Flight Park</td>
<td>Eastford</td>
<td>03-21</td>
<td>1,100’ x 45’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>200</td>
</tr>
<tr>
<td>Clouds Hill</td>
<td>Washington</td>
<td>13-31</td>
<td>1,800’ x 200’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>50</td>
</tr>
<tr>
<td>Devil's Hopyard</td>
<td>East Haddam</td>
<td>18-36</td>
<td>1,200’ x 50’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>270</td>
</tr>
<tr>
<td>Docktor's Field</td>
<td>New Milford</td>
<td>N-S</td>
<td>2,000’ x 100’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastford</td>
<td>Eastford</td>
<td>13-31</td>
<td>1,800’ x 40’</td>
<td>gravel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flying Ridge Airstrip</td>
<td>Newtown</td>
<td>N-S</td>
<td>2,000’ x 200’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallup Farm</td>
<td>Voluntown</td>
<td>N-S</td>
<td>2,000’ x 200’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gardner Lake</td>
<td>Colchester</td>
<td>16-34</td>
<td>1,900’ x 60’</td>
<td>turf</td>
<td>N/N</td>
<td>N</td>
<td>2</td>
</tr>
<tr>
<td>Good Hill Farm</td>
<td>Roxbury</td>
<td>N-S</td>
<td>2,800’ x 100’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>60</td>
</tr>
<tr>
<td>Grass Land Air Field</td>
<td>North Canaan</td>
<td>17-35</td>
<td>1,800’ x 100’</td>
<td>turf</td>
<td>N/Y</td>
<td>N</td>
<td>80</td>
</tr>
<tr>
<td>Green Acres Airstrip</td>
<td>Bristol</td>
<td>16-34</td>
<td>1,900’ x 24’</td>
<td>asph</td>
<td>Y/N</td>
<td>Y</td>
<td>70</td>
</tr>
<tr>
<td>Hillside Field</td>
<td>North Canaan</td>
<td>12-30</td>
<td>1,800’ x 100’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>150</td>
</tr>
<tr>
<td>Laurie Field</td>
<td>Hazardville</td>
<td>03-21</td>
<td>1,800’ x 100’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maplewood Farm</td>
<td>Durham</td>
<td>15-33</td>
<td>1,400’ x 50’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>Mile Creek</td>
<td>Old Lyme</td>
<td>02-20</td>
<td>1,800’ x 100’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>North Canaan Aviation Facilities</td>
<td>North Canaan</td>
<td>03-21</td>
<td>3,100’ x 80’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>1,800</td>
</tr>
<tr>
<td>Rink Field</td>
<td>Marlborough</td>
<td>NW-SE</td>
<td>1,500’ x 150’</td>
<td>turf</td>
<td>N/N</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Ripley Field</td>
<td>Litchfield</td>
<td>17-35</td>
<td>2,000’ x 200’</td>
<td>turf</td>
<td>N/N</td>
<td>N</td>
<td>4</td>
</tr>
<tr>
<td>Roberts Farm</td>
<td>East Windsor</td>
<td>10-28</td>
<td>2,000’ x 50’</td>
<td>turf</td>
<td>Y/Y</td>
<td>Y</td>
<td>110</td>
</tr>
<tr>
<td>Sharon Airstrip</td>
<td>Sharon</td>
<td>03-21</td>
<td>2,500’ x 100’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ski's Landing</td>
<td>Colchester</td>
<td>09-27</td>
<td>1,800’ x 60’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>Spruce Airport</td>
<td>Jewett City</td>
<td>16-34</td>
<td>1,700’ x 150’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>150</td>
</tr>
<tr>
<td>Swift</td>
<td>Stafford Springs</td>
<td>12-30</td>
<td>2,600’ x 60’</td>
<td>asph</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westford Landing Strip</td>
<td>Ashford</td>
<td>N-S</td>
<td>1,300’ x 300’</td>
<td>turf</td>
<td>Y/Y</td>
<td>N</td>
<td>20</td>
</tr>
<tr>
<td>Whelan Farms</td>
<td>Bethlehem</td>
<td>01-19</td>
<td>1,500’ x 75’</td>
<td>turf</td>
<td>Y/N</td>
<td>N</td>
<td>400</td>
</tr>
<tr>
<td>Windward Heights Airstrip</td>
<td>Mansfield</td>
<td>E-W</td>
<td>1,200’ x 200’</td>
<td>turf</td>
<td>N/Y</td>
<td>N</td>
<td>6</td>
</tr>
<tr>
<td>Wings Ago Airstrip</td>
<td>Goshen</td>
<td>18-36</td>
<td>1,600’ x 50’</td>
<td>turf</td>
<td>N/Y</td>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td>Wysocki Field</td>
<td>Ellington</td>
<td>18-36</td>
<td>1,900’ x 180’</td>
<td>turf</td>
<td>N/Y</td>
<td>N</td>
<td>100</td>
</tr>
<tr>
<td>Yankee Airstrip</td>
<td>East Killingly</td>
<td>02-20</td>
<td>1,700’ x 90’</td>
<td>turf</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEAPLANE BASES

<table>
<thead>
<tr>
<th>AIRPORT NAME</th>
<th>TOWN LOCATION</th>
<th>RUNWAY ORIENTATION</th>
<th>RUNWAY DIMENSIONS</th>
<th>HANGAR/ TIEDOWN Y/N</th>
<th>RUNWAY LIGHTING Y/N</th>
<th>ESTIMATED OPERATIONS FOR 2000</th>
<th>NO. OF YEARS AIRPORT HAS BEEN OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bootlegger's</td>
<td>Enfield</td>
<td>02-20</td>
<td>5,000’ x 500’</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fetske</td>
<td>Essex</td>
<td>18-36</td>
<td>5,000’ x 200’</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Island Cove</td>
<td>Glasgow</td>
<td>NW-SE</td>
<td>3,500’ x 500’</td>
<td>water</td>
<td>N/N</td>
<td>N</td>
<td>65</td>
</tr>
<tr>
<td>Nayaug Seaplane Landing Area</td>
<td>Glastonbury</td>
<td>03-21</td>
<td>3,000’ x 400’</td>
<td>water</td>
<td>N/N</td>
<td>N</td>
<td>10</td>
</tr>
<tr>
<td>Norwalk Seaplane Base</td>
<td>Norwalk</td>
<td></td>
<td></td>
<td>water</td>
<td>N/Y</td>
<td>N</td>
<td>40</td>
</tr>
<tr>
<td>Quaddick Lake</td>
<td>Thompson</td>
<td>N-S</td>
<td>4,000’ x 2,000’</td>
<td>water</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MILITARY

<table>
<thead>
<tr>
<th>AIRPORT NAME</th>
<th>TOWN LOCATION</th>
<th>RUNWAY ORIENTATION</th>
<th>RUNWAY DIMENSIONS</th>
<th>HANGAR/ TIEDOWN Y/N</th>
<th>RUNWAY LIGHTING Y/N</th>
<th>ESTIMATED OPERATIONS FOR 2000</th>
<th>NO. OF YEARS AIRPORT HAS BEEN OPEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone's Ranch (military)</td>
<td>East Lyme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp Reel (military)</td>
<td>Niantic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.7 Influential Airports Located in Surrounding States

Since aviation traffic does not adhere to political boundaries, the Connecticut airport system plan considers influential airports outside of Connecticut. Ten airports located in the States of New York, Massachusetts, and Rhode Island have been deemed influential on the Connecticut air system. In New York, the airports reviewed in detail are Dutchess County Airport, Westchester County Airport, Stewart International Airport, and Sky Acres Airport. In Massachusetts, Barnes Municipal Airport, Northampton Airport, Worcester Regional Airport, and Great Barrington Airport are reviewed. T.F. Green State Airport and Westerly State Airport are reviewed for Rhode Island. In this section the characteristics of these airports, planned expansion at the airport as well as how they may influence the Connecticut Statewide Airport System will be discussed. The characteristics of the airports are summarized in Table 2.6 and the location of the airports can be seen in Figure 2.1.

2.7.1 New York Airports

When one speaks of New York airports the first that come to mind are LaGuardia (LGA) and John F. Kennedy (JFK) Airports. LaGuardia and John F. Kennedy Airports have a large influence on not only Connecticut but New Jersey and Pennsylvania also. These airports are classified as large hub airports by the FAA, meaning that they enplane at least 1 percent of the total passengers in the US. These airports offer services to passengers that are unsurpassed in the region. Due to the airports variety of services for both domestic and international flights, they attract many southwestern Connecticut residents traveling by air. When looking at the airport system in Connecticut, it is realized that it will be extremely difficult to draw these passengers to Bradley International, Igor I. Sikorsky or Tweed-New Haven Regional Airport. Because of this, in the discussion of influential airports in New York, LaGuardia and John F. Kennedy Airports are not looked at in detail because their affect is known and not likely to change.

2.7.1.1 Dutchess County Airport (POU)

Dutchess County Airport is located in Wappingers Falls, NY on Route 110, 6 miles southeast of the city of Poughkeepsie. The airport is located approximately 66 miles west-southwest (WSW) of BDL, 40 miles WNW of OXC and 27 miles northwest of DXR. The airport is owned and operated by Dutchess County.

Dutchess County Airport is a general aviation airport catering to corporate operations and private pilots. The airport sits on a parcel of land totaling 640 acres. The 2005-2009 National Plan of Integrated Airport Systems (NPIAS) categorizes this airport as a general aviation airport. Dutchess County has three runways, two of which are paved and one of which is turf. The two paved runways are 06-24 that has a length of 5,001 feet and 15-33 that has a length of 3,005 and the turf runway 07-25 that has a length of 1,358 feet. The airport is served by an air traffic control tower (ATCT) which is available from 7:00 a.m.
Several FBO’s reside at the airport which provide for; airframe, all small aircraft, powerplant and instrument repairs; flight instruction; charters and aircraft rentals among others.

The airspace for the airport is Class D when the ATCT is open. When the ATCT is closed, Dutchess County operates under Class E airspace wherein the pilots are responsible for reporting their positions and intentions to other pilots.

POU has recently completed an Airport Master Plan Update (AMPU). This update has identified a significant shortage of aircraft hanger storage, an upturn in population and economic growth, that surrounding airports aircraft storage is quickly becoming saturated, and a growth in the corporate aviation market at the airport. The airport’s ALP is recommending several projects, many of which focus on the growth of the airport such as the reconstruction of the existing Welcome Center, construction of new T-hangers and corporate hanger development. The AMPU for Dutchess County Airport shows a need to grow to meet aviation demand at the airport.

Dutchess County Airport is influential on the Connecticut airports by giving both general aviation and corporate aircraft a place to operate from, thus helping to keep Connecticut airports less congested. If Dutchess County cannot complete the projects that were identified in their AMPU, the existing and possible new users to Dutchess County may look to Connecticut airports as an alternative location to base their operations. This could cause general aviation, corporate operations and based aircraft at Connecticut airports, specifically Danbury Municipal and Waterbury-Oxford, to increase.

2.7.1.2 Westchester County Airport - (HPN)

Westchester County Airport is located on the Connecticut – New York State Line in the Town of White Plains, NY. Exit 2 from Interstate 684 provides easy access and egress to the airport. The airport is located approximately 80 miles southwest of BDL, 46 miles west-southwest (WSW) of HVN, 41 miles southwest of OXC, and 24 miles southwest of DXR. The airport is owned and operated by Westchester County.

Westchester Airport is a commercial service airport, which is classified in the 2005-2009 NPIAS as a commercial service primary airport. The airport also serves a large corporate and general aviation contingent. The airport sits on 700 acres of land, with two runways, 11-29 that has a length of 4,451 feet and 16-34 that has a length of 6,548 feet. The airport is served by an ATCT that is available from 6:00 a.m. to 11:00 p.m. daily. The airport has enhanced navigational aids consisting of ILS, NDB, GPS RNAV and VOR/DME.
There are several FBO’s at the airport which provide for: airframe, power plant, propeller and instrument repairs; flight schools; service for small to large aircraft; aircraft rentals and charter services among others.

The airspace for Westchester is Class D in the vicinity of the airport, however, the airport is also controlled by the airspace for LaGuardia and John F. Kennedy airports which is Class B. Obstructions are an issue for most airports, but at Westchester some obstacles in the approach path are trees located in Greenwich which can become an issue.

Westchester is a commercial service airport that has recently seen many modifications including a refurbished terminal area and new parking garage. They provide service via 12 airlines to over 15 destinations throughout the northeast and the country. Westchester has a large problem with noise impacts due to the number of operations and the land-use surrounding the airport, which is mainly residential. While Westchester is concentrating on the commercial market, there are a large number of based aircraft at the airport (372), which leads to numerous general aviation operations. The airport also has a strong corporate presence having over 82 jets based there.

Due to the commercial services offered and the location of Westchester County Airport it increases the difficulty of drawing southwestern CT air travelers to Connecticut airports. Westchester also has an impact on the CT System due to the corporate activity at the airport. The airport is located in close proximity to New York City (about 50 miles) which makes it extremely attractive for corporate use. This may keep corporate users from using CT airports such as Waterbury-Oxford, Sikorsky and Danbury Municipal among others.

2.7.1.3 Stewart International Airport - (SWF)

Stewart International Airport is located in the Town of New Windsor, NY, at the intersection of Interstates 84 and 87, about 10 miles west of the town center. The airport is approximately 80 miles west-southwest (WSW) of BDL, 50 miles west of OXC, and 34 miles WNW of DXR. The airport is owned and operated by the National Express Group PLC under a 99-year lease agreement by the New York State Department of Transportation.

Stewart Airport provides commercial and cargo services to its users as well as having a strong corporate presence at the airport. Stewart is classified in the 2005-2009 NPIAS as a commercial service primary airport. The airport is situated on an 8,000-acre parcel of land of which 2,200 is used for aviation purposes. It has two runways 09-27 that has a length of 11,818 feet and 16-34 that has a length of 6,006 feet. The airport is served by a control tower, which is open 24 hours a day. Stewart International has enhanced navigational aids consisting of ILS, VOR, NDB, and GPS RNAV.

The FBO at the airport provides a full range of services including airframe repair for all large and small aircraft, powerplant repairs, charters, as well as other amenities for pilots and crew.
The airspace for Stewart International is Class D with the tower being operational 24 hours daily.

Stewart International is a growing airport with room for expansion. This airport has commercial service offered by six air carriers to eight destinations in the northeast and the country. They also offer extensive domestic and international air cargo capabilities having several air cargo operators located at the airport.

The ALP for Stewart International identifies the need to expand their terminal facilities to keep pace with their growing commercial aviation market. This could affect the Connecticut Airport System by drawing air passengers in western Connecticut away from Bradley International. Stewart International’s ALP also proposes increased cargo facilities. This increase in cargo facilities combined with the length of runway, amount of land that the airport owns and the access to Interstates 87 and 84 makes this an extremely attractive airport for cargo operators. This may have a large affect on the cargo operations at BDL if developable land cannot be found for accommodating additional cargo facilities at BDL.

2.7.1.4 Sky Acres Airport - (44N)

Sky Acres is located in LaGrangeville, NY and is 6 miles SW of Millbrook, NY. It is a privately owned opened to the public general aviation airport located on 120 acres of land. There is one runway, 17-35, which is 3,828 feet long. There are 2 separate stand alone GPS approaches. There are 4 FBO’s at the airport. Fuel and major repair services are available at the airport which also has a snack bar.

In the 2005-2009 NPIAS Sky Acres is classified as a reliever for Westchester County airport. The airspace is Class E.

A new access road was recently completed which will allow access to the west side of the airport where hanger development is expected to take place.

This airport helps support general aviation pilots and activities for northwestern Connecticut.

2.7.2 Massachusetts Airports

2.7.2.1 Barnes Municipal Airport (BAF)

Barnes Municipal Airport is located in the Town of Westfield, MA on Route 10 & 202, 12 miles from downtown Springfield, MA and 15 miles north of BDL. The airport is owned and operated by the City of Westfield and is governed by Airport Commissioners who are committed to pursuing its further development.
Barnes Airport is a general aviation airport catering to business executives and private individuals. The 2005-2009 NPIAS classifies Barnes Municipal as a general aviation airport. The airport sits on a parcel of land totaling 1,200 acres. It has 2 runways, 02-20 that has a length of 9,000 feet and 15-33 that has a length of 5,000 feet. The airport is served by an ACTC, which is available from 7:00 a.m. to 10:00 p.m. daily. The airport has enhanced navigational aids that consist of ILS, ADF, VORTAC, and GPS. The Massachusetts Air National Guard is located at the airport and provides twenty-four hour aircraft rescue and fire fighting services.

There are several FBO’s at the airport which provide for airframe, engine and electrical repair, flight schools, service for small aircraft as well as corporate jets, aircraft rentals and charter services among others.

The airspace for the airport is Class D when the ATCT is open. When the ATCT is closed, Barnes Municipal operates as Class G airspace wherein the pilots are responsible for reporting their positions and intentions to other pilots.

BAF is focusing on the corporate market and is expanding this area of the airport. The airport has a large military presence due to the 104th Tactical Fighter Group, Massachusetts Air National Guard.

Barnes Municipal Airport’s location is only approximately 20 miles driving distance from BDL and conveniently located near Interstate 90. It allows for quick access to BDL and other destinations in CT. This may help to keep BDL’s general aviation operations to a minimum, which in turn will help the airport operate more efficiently. The location of Barnes Municipal in conjunction with the runway length of 9,000 feet is also very attractive to corporate users. It allows these users access to a runway with nearly the same length as BDL’s without having to contend with the commercial aviation traffic present at BDL.

2.7.2.2 Northampton Airport - (7B2)

Northampton Airport is located in the Town of Northampton, MA on Old Ferry Road, a mile from the Town center, on the Connecticut River. The airport is owned and operated by Northampton Airport Inc. and has been in operation since its inception in 1929. Bradley International Airport is 26 miles to the south of Northampton airport.

Northampton Airport is a general aviation airport catering to private pilots flying small single and multi-engine aircraft. The 2005-2009 NPIAS classifies Northampton as a general aviation airport. The airport is on a parcel of land totaling 55 acres. It has a single runway 14-32 with a length of 3,365 feet and no ATCT. Recently there have been several improvements to the airport such as a pavement overlay of the runway, new lights and a rotating beacon.

The airport has several FBO’s which offer airframe and power plant repairs, flight schools, aircraft rentals and has self service fuel available 24 hours.
The airspace for the airport is Class E making pilots responsible for reporting their position and intention to other pilots in the vicinity.

Northampton is a general aviation airport and at this time there are no plans for any major expansion to the airport. The airport helps to alleviate small aircraft general aviation operations at BDL due to its proximity.

2.7.2.3 Worcester Regional Airport - (ORH)

Worcester Regional Airport is located in Worcester MA approximately 2.5 miles from Interstate 290. The airport is owned by the City of Worcester and operated by the Massachusetts Port Authority. It is approximately 50 miles in a northeasterly direction from Bradley International Airport.

Worcester Regional is a commercial service airport, which is categorized as a primary commercial service airport in the 2005-2009 NPIAS. The airport sits on a parcel of land totaling 1,000 acres. It has 2 runways, 11-29 that has a length of 7,000 feet and 15-33 that has a length of 5,000 feet. The airport is served by an ATCT, which is available from 6:30 a.m. to 9:00 p.m. The airport has enhanced navigational aids that consist of NDB, ILS and GPS.

There are several FBO’s at the airport, which provide for airframe, engine, power plant and instrument repairs, flight schools; service for small aircraft and large aircraft and aircraft rental among others.

The airspace for the airport is Class D when the ACTC is open. When the ATCT is closed, Worcester Regional operates as Class E airspace wherein the pilots are responsible for reporting their positions and intentions to other pilots.

There are no immediate plans to expand ORH. The existing terminal is adequate to handle the passenger activity for the near future. Two commuter airlines operate out of ORH to and from Atlanta and Philadelphia. There is extensive flight training provided by one of the FBO’s.

This airport attracts passengers that may not want to use Logan (Boston, MA) for various reasons, including congestion and delay. If Worcester Regional were to discontinue offering these commercial services, BDL could see an increase in passenger enplanements.

2.7.2.4 Great Barrington Airport - (GBR)

Great Barrington airport is a privately owned public use airport located on Route 71 in the town of Great Barrington, 2 miles west of the town center. It is a general aviation airport with single and multi-engine aircraft. It has one runway 11/29, which is 2,579 feet long. The airport is on a parcel of land totaling 100 acres.
The 2005-2009 NPIAS classifies Great Barrington as a general aviation airport. The airport’s amenities include airframe and power plant repairs, a flight school, aircraft rentals and fuel. The NAVAIDS include a NDB approach and 2 separate GPS.

Great Barrington is privately owned and like most private airports has financial constraints. For this reason there are no plans for expansion to the airport at this time.

2.7.3 Rhode Island Airports

2.7.3.1 Theodore Francis (T.F.) Green State Airport - (PVD)

T.F. Green State Airport is located in the City of Warwick, RI on Route 1, approximately 10 miles southwest of downtown Providence, RI. The airport is 67 miles east-southeast (ESE) of BDL, 42 miles northeast of GON, 83 miles ENE of HVN, 39 miles east of Windham, and 25 miles ESE of Danielson. The airport is owned and operated by the Rhode Island Airports Corporation (RIAC). In addition to T.F. Green, RIAC owns and operates five general aviation airports in the state: Block Island, Newport, North Central, Quonset and Westerly.

T. F. Green is a commercial service airport, which also caters to corporate operations. It is classified in the 2005-2009 NPIAS as a commercial service primary airport. The airport is located on 1,111 acres of land. The airport has three runways, two of which are parallel and one crosswind runway. The parallel runways are 05L-23L, which has a length of 7,166 feet and 05R-23R that has a length of 4,432 feet. The crosswind runway is 16-34 has a length of 6,081 feet. T.F. Green is served by an ATCT that is available from 6:00 a.m. to midnight. Enhanced navigational aids consist of NDB, GPS RNAV, ILS, VOR, ILS/DME and VOR/DME.

There are several FBO’s that provide a variety of services to the airport users. Repair services include airframe, all small aircraft, all large aircraft and powerplant. Other services include aircraft rental, flight instruction for commercial and private airplanes and charter among others.

The airspace for T.F. Green State Airport is Class C when the ATCT is in operation. When the tower is closed from midnight to 6:00 a.m. the airspace is Class D and is controlled by the Boston ARTCC.

T.F. Green State Airport is a commercial service airport serving 29 destinations with eight commercial and eight commuter carriers. There are also three all cargo airlines that use the airport. T. F. Green also serves the corporate aviation market as well as private pilots. The airport management has recently published a Master Plan document that identifies projects needed to keep pace with growing demands. Some major items discussed in the draft plan are the need for 9,500 feet of runway, additional gates for commercial service and expansion of terminal facilities in the near future. The Master
Plan anticipates that the airport will continue to grow in the future in all areas of aviation operations.

T.F. Green Airport relieves Connecticut airports from a large amount of passenger service that may otherwise choose to use Bradley International or Tweed-New Haven. With the arrival of Southwest Airlines the airport has seen rapid growth in both operations and enplaned passengers, much as Bradley International has. The location of T.F. Green makes it difficult to draw existing and new users from Rhode Island to Connecticut airports due to the variety of services that they offer and the proximity to the Connecticut airports.

2.7.3.2 Westerly State Airport (WST)

Westerly State Airport is located in the town of Westerly, RI on Route 1, two miles southeast of downtown Westerly. The airport is 62 miles southeast of BDL, 14 miles east of GON, 34 miles south of Danielson and 34 miles southeast of Windham. Westerly State Airport is owned and operated by the Rhode Island Airports Corporation (RIAC).

Westerly State Airport is a general aviation airport that has scheduled charter service to Block Island. The airport also caters to corporate entities and private pilots alike. The 2005-2009 NPIAS classifies the airport as a commercial service non-primary airport, due to its scheduled flights to Block Island. The airport is located on a parcel of land that is 321 acres. It has 2 runways 07-25, which has a length of 4,010 feet and runway 14-32 that has a length of 3,960 feet. The airport does not have a control tower. Westerly State Airport has navaids that include LOC and GPS RNAV.

Several FBO’s are located at the airport and provide a variety of services for its users. These services include airframe, powerplant, all small aircraft, instrument and radio repairs and charters among others. The airport also provides corporate aviation service and regularly scheduled air passenger service to Block Island.

The airspace for the airport is Class E, wherein the pilots are responsible for reporting their positions and intentions to other pilots.

Westerly State Airport is a general aviation airport that provides scheduled charter service to Block Island and has the ability to provide extensive aircraft maintenance and repair at the airport. This makes the airport attractive to private pilots and corporate aviation. There are no plans for major expansion at the airport.

This airport supplements general aviation operations from Groton-New London airport. Due to its close proximity to Groton-New London and the services that it offers pilots and airport users, Westerly Airport is an attractive alternative.
<table>
<thead>
<tr>
<th>Airport Name Id</th>
<th>Associated Town</th>
<th>Owner / Operator</th>
<th>NPIAS</th>
<th>Role</th>
<th># of Acres</th>
<th>Runway Orientation</th>
<th>Runway Dimensions</th>
<th>Runway Surface</th>
<th>Airspace Operations</th>
<th>Influence Area</th>
<th># of Based Aircraft</th>
<th>Approach Lighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dutchess County Airport</td>
<td>POU Poughkeepsie, NY</td>
<td>Dutchess</td>
<td>CM 640</td>
<td>06-24</td>
<td>5,001' x 100' asphalt</td>
<td>D/E</td>
<td>136,969</td>
<td>ATCT MALSR / HIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westchester County Airport</td>
<td>HPN White Plains, NY</td>
<td>Westchester</td>
<td>PR 700</td>
<td>16-34</td>
<td>6,548' x 150' asphalt</td>
<td>D</td>
<td>187,660</td>
<td>ATCT MALSR / HIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stewart International Airport</td>
<td>SWF Newburgh, NY</td>
<td>National Express</td>
<td>PR 2,200</td>
<td>09-27</td>
<td>11,818' x 150' asphalt</td>
<td>D</td>
<td>115,426</td>
<td>ATCT ALSF2 / HIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sky Acres Airport</td>
<td>44N Millbrook, NY</td>
<td>Private</td>
<td>RL 120</td>
<td>17-35</td>
<td>3,828' x 60' asphalt</td>
<td>E</td>
<td>48,300</td>
<td>GPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barnes Municipal Airport</td>
<td>BAF Westfield, MA</td>
<td>City of Westfield</td>
<td>GA 1,200</td>
<td>02-20</td>
<td>9,000' x 150' asphalt</td>
<td>D/G</td>
<td>66280</td>
<td>ATCT HIRL / MALSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northampton Airport</td>
<td>7B2 Northampton, MA</td>
<td>Northampton Airport Inc.</td>
<td>GA 55</td>
<td>14-32</td>
<td>3,365' x 50' asphalt</td>
<td>E</td>
<td>41,300</td>
<td>HIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worcester Regional Airport</td>
<td>ORH Worcester, MA</td>
<td>Worcester Airport Corp.</td>
<td>PR 1,000</td>
<td>11-29</td>
<td>7,000' x 150' asphalt</td>
<td>D/E</td>
<td>50,306</td>
<td>ATCT MALSR / HIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Barrington Airport</td>
<td>GBR Great Barrington, MA</td>
<td>Private</td>
<td>GA 100</td>
<td>11-29</td>
<td>2,579' x 50' asphalt</td>
<td>E</td>
<td>29,240</td>
<td>T.F. Green State Airport</td>
<td>PVD Providence, RI</td>
<td>Rhode Island</td>
<td>PR 1,111</td>
<td>05R-23R</td>
</tr>
<tr>
<td>Westerly State Airport</td>
<td>WST Westerly, RI</td>
<td>Rhode Island</td>
<td>PR 321</td>
<td>07-25</td>
<td>4,010' x 100' asphalt</td>
<td>E</td>
<td>16,796</td>
<td>MALSF / MIRL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2.6: Influential Airports Located in Surrounding States
<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASS A</td>
<td>Airspace above 18,000' MSL, up to and including 60,000' MSL</td>
</tr>
<tr>
<td>CLASS B</td>
<td>Surface to 10,000' MSL; surrounds major airports, with varying tiers.</td>
</tr>
<tr>
<td>CLASS C</td>
<td>Surface to 4,000' AGL; surface to 1,200' AGL with a radius of 5 NM, 1,200' to 4,000' AGL the radius is 10 NM.</td>
</tr>
<tr>
<td>CLASS D</td>
<td>Airspace from the surface to 2,500' AGL surrounding towered airports.</td>
</tr>
<tr>
<td>CLASS E</td>
<td>Controlled airspace that is not designated as Class A, B, C or D.</td>
</tr>
<tr>
<td>CLASS G</td>
<td>Uncontrolled airspace that is not designated Class A, B, C or D.</td>
</tr>
</tbody>
</table>

Figure 2.2
TYPICAL AIRSPACE DIAGRAM

CONNECTICUT STATEWIDE AIRPORT SYSTEM PLAN
CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF POLICY AND PLANNING
FIGURE 2.10
DANIELSON AIRPORT
GENERAL AVIATION SERVICE AREA

LEGEND

STATE OWNED AIRPORTS
MUNICIPAL AIRPORTS
PRIVATELY OWNED FOR PUBLIC USE AIRPORTS
AIRPORTS IN SURROUNDING STATES
NOT TO SCALE

SERVICE AREA
SEAPLANE BASE

CONNECTICUT STATEWIDE AIRPORT SYSTEM PLAN
CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF POLICY AND PLANNING

Chapter 2 - Inventory
June 2006
FIGURE 2.14
DANBURY AIRPORT
GENERAL AVIATION SERVICE AREA

LEGEND

STATE-OWNED AIRPORTS
MUNICIPAL AIRPORTS
PRIVATELY OWNED FOR PUBLIC USE AIRPORTS
AIRPORTS IN SURROUNDING STATES
NOT TO SCALE

SERVICE AREA
SEAPLANE BASE

CONNECTICUT STATEWIDE AIRPORT SYSTEM PLAN
CONNECTICUT DEPARTMENT OF TRANSPORTATION
BUREAU OF POLICY AND PLANNING