Tropospheric Ozone and Human Health

Michelle L. Bell
Yale School of Forestry and Environmental Studies

Connecticut Department of Environmental Protection
June 9, 2005
• Brief history of air pollution and human health research
• Tropospheric ozone
• The relationship between ozone and mortality
 – Recent studies
 – Future research directions
Early Air Pollution and Human Health Research

Donora, PA 1948

LA, 1940’s and 50’s

Photos: DL Davis, 2002
Designer Smog Masks
(London 1950’s)

London 1952
10:30am

Source: National Archives
Cardiac Emergency Bed Service Applications for Greater London 1952

Source: Bell & Davis, *EHP* 2001

Source: NMMAPS, Johns Hopkins Bloomberg School of Public Health
Also in 1952: Discovery of Photochemical Smog

- Arie Haagen-Smit (1900 – 1977)
 - Began with study of vegetation damaged by air pollution
 - Discovered that tropospheric O₃ was
 - Not mainly from stratospheric intrusion
 - Not directly emitted but was formed through the chemical conversion of precursors
 - Suggested that O₃ and its precursors were the main constituents of LA smog
Tropospheric O$_3$ Chemistry
(very simplified)

VOCs + NO$_x$ + heat / sunlight \rightarrow O$_3$

Precursors to ozone

Secondary pollutant
Anthropogenic Ozone Precursors

VOC Sources
- Motor Vehicles: 45%
- Industry / Commercial: 22%
- Consumer Solvents: 5%
- Other: 17%
- Utilities: 5%

NO\textsubscript{x} Sources
- Motor Vehicles: 56%
- Industry / Commercial / Residential: 22%
- Other: 17%

Source: *EPA 2003*
NO$_2$ and Health

- Health effects: irritation to throat and lungs, respiratory tract infection, exacerbation of asthma, lung function, possible increased susceptibility to allergens
- Children and asthmatics more susceptible
- Also a Criteria Pollutant
Volatile Organic Compounds (VOCS)

- Category of pollutants
- Gas
- Primary, secondary
- **Sources:** Biomass and fossil fuel combustion, construction materials, household chemicals (solvents), industry, biogenic sources
- **Health effects:** headache, dizziness, upper respiratory tract irritation, nausea, cancer
O$_3$ Isopleth Plot
Attainment and Nonattainment Areas in the U.S. 8-hour Ozone Standard

Source: EPA Greenbook
Health Impacts of Ozone

• Effects on lung function
• Respiratory symptoms
• Exacerbation of asthma
• Hospital admissions
• Emergency room visits
• Mortality?

Source: EPA. *Air Quality Criteria for Ozone and Related Photochemical Oxidants*. 1996
Why divergent results for ozone and mortality?

- Potential reasons:
 - Differences in (and lack of) statistical power
 - Various statistical methods
 - Addressing of potential confounders
 - Underlying populations
 - Health care systems
 - Data quality
 - Others?
Why divergent results for ozone and mortality?

• Potential reasons:
 – Differences in (and lack of) statistical power
 – Various statistical methods
 – Addressing of potential confounders
 – Underlying populations
 – Health care systems
 – Data quality
 – Others?
Confounders

• Potential confounder
 – Associated with the exposure of concern
 – Associated with the health endpoint
 – Not in the causal pathway

• Can create spurious associations or obscure real associations

Alcohol → ? → Lung Cancer
Confounding Example

• What is associated with both the exposure and the health outcome?
 – Could potentially be a confounder

Diagram:
- Smoking
 - Alcohol
 - Lung Cancer
 - ?

Exposure
Confounder
Potential Confounders for Ozone and Mortality

- Emissions Sources
- Ozone
- PM
- Mortality

Depends on question mark (?).
Approaches to Resolve Seemingly Conflicting Results

1) Meta-Analysis
 Combine results of previous efforts
 + Increased statistical power
 + Can explore differences in model specification, location, etc.
 - Publication bias

2) Multi-City Study
 Estimate the relationship in numerous locations
 + The above advantages
 + Lack of publication bias
 - Data intensive
1) Meta-Analysis Approach

- Systematically review the literature to find studies
- 144 effect estimates from 39 time-series studies
 - 38 in the U.S., 106 from outside the U.S.
- Combine the estimates using a Bayesian hierarchical model

\[
\hat{\beta}^s \mid \beta^s, \nu^s \sim N(\beta^s, \nu^s), s = 1, \ldots, S
\]

\[
\beta \mid \mu, \tau^2 \sim N(\mu, \tau^2)
\]

Plus sensitivity analysis to model structure and distributions . . .

Source: Bell et al., *Epidemiology* 2005
<table>
<thead>
<tr>
<th>Cause</th>
<th>Percent Increase (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>0.87% (0.55, 1.18%)</td>
</tr>
<tr>
<td>CVD</td>
<td>1.11% (0.68, 1.53%)</td>
</tr>
<tr>
<td>Respiratory</td>
<td>0.47% (-0.51, 1.47%)</td>
</tr>
</tbody>
</table>
Other New Meta-Analyses

% Increase in Daily Mortality for 10 ppb in Daily O₃

-1.0 0.0 1.0 2.0

Lag 0 Lag 1

Provided a single lag
Provided multiple lags

Publication bias?
Selected Meta-Analysis Results

- 144 effect estimates from 39 time-series studies
- Strong statistically significant association identified between ozone and mortality for total deaths and cardiovascular disease
- Implied relationship between ozone and respiratory disease mortality
- Large heterogeneity in individual study estimates
- Strong indications of publication bias
2) Multi-City Study

- Time-series study to investigate short-term exposure to ambient ozone (up to a week)
- 95 large urban U.S. communities (40% of the U.S. population)
- 14 years of daily data from 1987 to 2000
 - Some cities monitor O$_3$ for part of the year
- Uniform analysis framework for all cities
- Total and Cardiovascular/Respiratory mortality

Source: Bell et al., *JAMA* 2004
Hierarchical Approach

• Stage 1
 – Estimate the relationship between ozone and mortality within each city

• Stage 2
 – Combine the city-specific estimates to generate a national estimate, taking into account the uncertainty of each city’s estimate
Stage 1: Community-Specific Model

Mortality for a given city on a given day

\[\ln(E[\mu_t^c]) = \sum_{l=0}^{L} \beta_l^c x_{t-l}^c + \gamma^c DO\text{W}_t^c + S_t^c (time_t, df_t) \]

Ozone levels on that day and previous days

Temperature

\[+ S_T^c (T_t^c, df_T) + S_{T_{1,3}}^c (T_{t-1,t-3}^c, df_{T_{1,3}}) \]

Heat waves

Dew point on that day and recent days

\[+ S_D^c (D_t^c, df_D) + S_{D_{1,3}}^c (D_{t-1,t-3}^c, df_{D_{1,3}}) \]
Community-Specific Bayesian Estimates

95 city-specific responses

% Increase in Daily Mortality for 10 ppb Daily Ozone

Overall Estimate
Total Mortality
CVD + Respiratory Mortality

% Increase in Daily Mortality for 10 ppb Daily O₃

Lag 0 Lag 1 Lag 2 Lag 3

SINGLE LAG MODELS DISTRIBUTED LAG MODELS
Exclude Days with High Temperatures

- Results robust to exclusion of high temperature days
- Effects range from: 0.50% (0.25, 0.75%) to 0.55% (0.30, 0.80%)
Sensitivity to Adjustment by PM$_{10}$

Adjusted for PM$_{10}$ (lag 1)

Without PM Adjustment
(using only days with PM data)

X = National Average Effect
Selected Multi-City Study Results

- 95 U.S. urban communities over 14 years
- Identified a strong statistically significant association between ozone and mortality
- Effects present for O_3 on the present day, previous day, and up to about a week
- Effects similar for all age groups considered
- Results robust to adjustment by PM$_{10}$, degrees of freedom for smooth functions of time, and temperature
- Association present even when considering only days below EPA’s current standard
Compare Meta-Analysis and Multi-City Results

% Increase in Mortality for 10 ppb Daily Ozone

- Meta-Analysis
- Multi-City

Total
Resp
CVD
CVD Resp
Mortality now (tentatively) included as a health endpoint.

Source: EPA. *Air Quality Criteria for Ozone and Related Photochemical Oxidants DRAFT*. 2005
Future Research Directions

- Ozone threshold studies
Future Research Directions

• Ozone threshold studies
• Climate change and ozone

Summer Ozone Levels (2050’s vs. 1990’s)
Future Research Directions

- Ozone threshold studies
- Climate change and ozone
- Particulate matter speciation
- Mortality and air pollution in Latin American urban centers

Summer Ozone Levels (2050’s vs. 1990’s)
Acknowledgements

Francesca Dominici, Scott L. Zeger, Jonathan M. Samet, and Aidan McDermott
Johns Hopkins Bloomberg School of Public Health

Jonathan Patz
University of Wisconsin – Madison
Nelson Institute for Environmental Studies

Patrick L. Kinney
Columbia University, Mailman School of Public Health

Devra L. Davis
University of Pittsburg, Center for Environmental Oncology