Residential Code Requirements
Exhaust, Ventilation & Duct Systems

December 2011

Office of Education and Data Management
Department of Construction Services

Residential Code Requirements
Exhaust, Ventilation &
Duct Systems
Moving from 2003 IRC to 2009 IRC

Presented by
Douglas M. Schanne
Assistant Director
December 2011

Based Upon

• 2003 IRC
 – Sections in reference to:
 • Ventilation
 • Exhaust
 • Duct Systems
 – As amended by the 2005 Amendment to the Connecticut Supplement

Based Upon

• 2009 IRC
 – Sections in reference to:
 • Ventilation
 • Exhaust
 • Duct Systems
 – As amended by the pending 2011 Amendment to the Connecticut Supplement

Please turn down cell phones and put pagers on vibrate.

Thank you
Course Objectives

• Construction Changes that effects ventilation, exhaust and ducts.
• Review of Code Definitions
• What Are The Residential Code Requirements For
 – Ventilation
 – Exhaust
 – Duct Systems
• How Does 2009 IRC requirements differ from 2003 IRC requirements

Course Objectives

Ventilation, Exhaust, Duct Systems

• How Do Each Of These Systems
 – Interact with each other
 • As directed by the 2009 IRC compared to 2003
 • In overall
 – Operation
 – Comfort
 – Indoor Air Quality

Ventilation

• What Is It?
 – According to Chapter 2, Section R202 definitions
 • VENTILATION:
 – The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space

Natural Ventilation

• When Can We Use Natural Ventilation?
 – Section R303.1
 • Minimum open able area to the outdoors
 – 4% of the floor area being ventilated
Residential Code Requirements
Exhaust, Ventilation & Duct Systems

4% Example #1

- Applying R303.1
 - 20' x 30' = 600 sq ft
 - 4% Of Floor Area
 - Minimum open able area equals
 - .04 x 600 = 24 sq ft
 - 32 sq ft open able area (vs.) minimum of 24 sq ft
- Windows Meet Code Requirements

4% Example #2

- Applying R303.1
 - 20' x 30' = 600 sq ft
 - 4% Of Floor Area
 - Minimal open able area equals
 - 600 x .04 = 24 sq ft
 - 12 sq ft operable area (vs.) minimum of 24 sq ft
- Window Does Not Meet Code Requirement

Adjoining Spaces

- An Adjoining Room
 - Section R303.2
 - When ½ or greater of the common wall is open and unobstructed
 - Opening not less than 1/10 of the floor area
 - Of the interior room
 - Not less than 25 square feet

Adjoining Spaces #1

- Required Opening
 - Total of both rooms
 - 50' x 20' = 1200 sq ft
 - 4% of area = 1200 x .04 = 48 sq ft
- Open Able Area
 - Door = 4' x 7' = 28 sq ft
 - 28 sq ft per door X 2 doors = 56 sq ft
 - 56 Actual (vs.) 48 required
 - Code Requirement is Met

Adjoining Spaces #2

- Required Opening
 - Total of both rooms
 - 50' x 20' = 1200 sq ft
 - 4% of area = 1200 x .04 = 48 sq ft
- Open Able Area
 - Door = 4' x 7' = 28 sq ft
 - 28 sq ft per door X 2 doors = 56 sq ft
 - 56 Actual (vs.) 48 required
 - Code Requirement is Met
Residential Code Requirements

Exhaust, Ventilation & Duct Systems

Adjoining Spaces #2

- **Required Opening**
 - Total of both rooms
 - 60’ X 20’ = 1200 sq ft
 - 4% of area = 1200 X .04 = 48 sq ft

- **Open Able Area**
 - Door = 3’ X 7’ = 21 sq ft
 - 21 sq ft per door X 2 doors = 42 sq ft
 - 42 Actual (vs.) 48 required
 - Code Requirement is NOT Met

- 60’ X 20’ = 1200 sq ft
- 4% of area = 1200 X .04 = 48 sq ft

Bathroom Ventilation

- **Section R303.3 Bathrooms**
 - Aggregate Glazing Area
 - Of not less than 3 sq ft, in windows
 - ½ of which must be open able

- 42 Actual (vs.) 48 required

Crawl Space Ventilation

- **Where Required**
 - **Section R408.1 Ventilation**
 - Under-floor space between the
 - Bottom of the floor joists and the earth
 - Shall be provided with ventilation openings
 - **Minimum net area of ventilation openings**
 - Not to be less than
 - 1 square foot for every 150 square feet
 - **One opening to be**
 - Within 3 feet of each corner

- Where Required (New for 2009 IRC)
 - **Section R408.1 Ventilation**
 - When the Ground surface is covered by Class 1 Vapor Retarder Material (0.1 perm or less)
 - **Minimum net area of ventilation openings**
 - Not to be less than
 - 1 square foot for each 1,500 square feet
 - **One opening to be**
 - Within 3 feet of each corner
Crawl Space Ventilation

Ventilation Opening Shall Be Within 3 Feet Of Each Corner Of The Building

Ventilation Openings

• Openings To Be Covered For
 – Height & width
 – Section R408.2
 • Materials
 – Perforated sheet metal plates
 – Expanded sheet metal plates
 – Cast iron grills
 – Extruded load bearing brick vents
 – Hardware Cloth
 – Corrosion resistant wire mesh

Opening Exceptions

• Natural Ventilation
 – Climatic conditions
 – Opening reduction
 • With approved vapor barrier
 • Cross ventilation provided
 – Space used as supply plenum
 • For heating or cooling
 – Mechanical ventilation
 • Rate of 1.0 cfm / 50 sq ft
 – No ventilation openings
 • Approved vapor retarder
 • Space is supplied with conditioned air

Exception #5

• No Openings Required When
 – Ground is covered with an approved vapor retarder
 • Perimeter walls are insulated
 – Refers over to
 • Section N1102.1.7 Crawl Space Walls
 – Insulation requirements per Table 1102.1
 – Exposed earth
 • Continuous vapor retarder
 • Maximum permeance of 1.0
2003 Table Is Set Up By Climate Zones

CT Uses Zones 12, 13, 14

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>U-factor</th>
<th>U-factor</th>
<th>Glazed Fenestration U-factor</th>
<th>Shgc</th>
<th>Ceiling R-value</th>
<th>Wood Frame Wall R-value</th>
<th>Masonry Wall R-value</th>
<th>Mass Wall R-value</th>
<th>Floor R-value</th>
<th>Basment Wall R-value</th>
<th>Crawl Space Wall R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.40</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>4 except Marine</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

2009 Table Is Set Up By Climate Zones

CT Uses Zone 5

<table>
<thead>
<tr>
<th>Climate Zone</th>
<th>U-factor</th>
<th>U-factor</th>
<th>Glazed Fenestration U-factor</th>
<th>Shgc</th>
<th>Ceiling R-value</th>
<th>Wood Frame Wall R-value</th>
<th>Masonry Wall R-value</th>
<th>Mass Wall R-value</th>
<th>Floor R-value</th>
<th>Basment Wall R-value</th>
<th>Crawl Space Wall R-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>3</td>
<td>0.35</td>
<td>0.60</td>
<td>NR</td>
<td>0.30</td>
<td>1.20</td>
<td>0.85</td>
<td>0.35</td>
<td>0.75</td>
<td>0.75</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Attic / Roof Ventilation

Ventilation Required – Section R806.1

(As per 2005 Amendments to CT Supplement)

- Cross ventilation necessary
 - Ventilation to be from openings protected from the elements
 - With corrosion resistant wire mesh
 - 1/8 to ¼ inch maximum openings

Minimum Area - Section R806.2

- Not less than 1 to 150 of the area
 - Reduction to 1 to 300
 - With ventilators providing 50 to 80%
 - Of required ventilation

Vent Clearance

Installation Of Eave Or Cornice Vents

- Insulation is not to block the free flow of air
 - Minimum space of 1 inch
 - To be provided between insulation and roof sheathing
Necessity Of Mechanical Ventilation & Exhaust Systems

- **Our Areas Of Discussion On Natural Ventilation**
 - Have shown that when the code requirements for Natural Ventilation cannot be met
 - Mechanical Ventilation is necessary
- **Reference To:**
 - R303 Light Ventilation & Heating
 - R408 Under Floor space

Definitions Relating To Mechanical Ventilation & Exhaust

- **How Does The Code Look At Mechanical Systems?**
 - **Mechanical Exhaust System**
 - A system for removing air from a room or space by mechanical means
 - **Mechanical System**
 - A system specifically addressed and regulated in this code and composed of components, devices, appliances and equipment

Definitions Relating To Mechanical Ventilation & Exhaust

- **Continuation**
 - **Ventilation**
 - The natural or mechanical process of supplying conditioned or unconditioned air to, or removing such air from, any space
 - (This is the same definition we looked at previously)
 - **NOTE:**
 - Ventilation and venting are two separate processes
 - Venting is the removal of combustion products to the outdoors

Mechanical Ventilation For Habitable Rooms

- **When Natural Ventilation Does Not Meet The Requirements Of R303.1**
 - **Exception #1**
 - Applies for the use of Mechanical Ventilation
 - It can be broken down into two parts
 - **Part 1**
 - An approved mechanical ventilation system
 - Capable of 0.35 air changes/ hour
 - Within the room
Example For Part 1

- **Application:**
 - Room is:
 - 12'w X 20'l X 8'h = 1920 cu ft
 - 0.35 air change / hour = 35%
 - .35 X 1920 cf = 672 cfm
 - 672 cfm / 60 min = 11.2 cfm

Second Portion Of Exception

- **Part 2**
 - When a whole house mechanical ventilation system is used
 - It is to be capable of supplying outdoor ventilation at
 - 15 cubic feet per minute / occupant
 - Computation base
 - 2 occupants for first bedroom
 - 1 occupant for each additional bedroom

Example For Part 2

- **5 Bedroom Home**
 - Master = 2 occupants
 - #2 = 1 occupant
 - #3 = 1 occupant
 - #4 = 1 occupant
 - #5 = 1 occupant
 - Total occupant load = 6 X 15 cfm = 90 cfm
 - 90 cfm whole house mechanical ventilation is necessary

Mechanical Ventilation For Bathrooms

- **Section R303.3 Bathrooms**
 - When the natural ventilation requirements for bathrooms cannot be met
 - The Exception would apply for mechanical ventilation
 - Minimum ventilation rates of
 - 50 cfm intermittent
 - 20 cfm continuous
 - All exhausting must be to the exterior of the building
Additional Code Sections

• Section M1506 Mechanical Ventilation
 – Sets up overlapping sections with R303.3
 • First
 – Exhaust air from bathrooms and toilet rooms shall not be recirculated within a residence or to another dwelling
 • Second
 – Exhaust systems shall have the capacity to exhaust the minimum air flow rate
 » As per Table M1506.3

Referenced Table

<table>
<thead>
<tr>
<th>AREA TO BE VENTILATED</th>
<th>VENTILATION RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchens</td>
<td>100 cfm intermittent or 25 cfm continuous</td>
</tr>
<tr>
<td>Bathrooms—Toilet Rooms</td>
<td>Mechanical exhaust capacity of 50 cfm intermittent or 20 cfm continuous</td>
</tr>
</tbody>
</table>

Opening Locations

• Intake Openings R303.4.1
 – Minimum requirements for intake openings of natural and mechanical
 • 10 feet from hazardous or noxious contaminant
 • If within 10 feet of a source
 – Locate opening a minimum of 2 feet below the contaminant source
 – Dwelling unit exhaust, Bathroom exhaust and Kitchen exhaust
 • Are not considered to be hazardous or noxious

Figure R303.4.1

From 2003 IRC Commentary
Exhaust Location

- **Exhaust Openings R303.4.2**
 - Location of exhaust openings not to create a nuisance
 - What Does The Code Consider To Be A Nuisance
 - Dangerous to human life
 - Detrimental to health
 - Worse than bothersome
 - No direction of exhaust air to walkways

Opening Protection

- **Outside Opening Protection R303.5**
 - To be provided with corrosion resistant
 - Screens, Louvers or Grills
 - Minimum opening
 - Of \(\frac{1}{4} \) inch
 - Maximum opening
 - Of \(\frac{1}{2} \) inch

Underfloor Mechanical Ventilation

- **Exception #4**
 - Of Section R408.2
 - Allows for mechanical ventilation
 - With continuous mechanical ventilation
 - At a rate of 1.0 cfm
 - For each 50 sq ft of underfloor space
 - Ground surface to be covered with an approved vapor retarder material

What Is The Difference

- **Vapor Permeable Membrane:**
 - A material of covering having a permeance rating of \(5 \) perms or greater, when tested in accordance with the desiccant method using Procedure A of ASTM E96.
 - A vapor permeable material permits the passage of moisture vapor

- **Vapor Retarder:**
 - A vapor resistant material, membrane or covering such as foil, plastic sheeting, or insulation facing having a permeance rating of \(1 \) perm or less, when tested in accordance with the desiccant method using Procedure A of ASTM E96.
 - Vapor retarders limit the amount of moisture vapor that passes through a material or wall assembly
Example

Crawl Space

- Crawl Space = 50' long x 30' wide =
 - 1500 Square Ft
 - 1500 sq ft / 50 sq ft = 30
 - 30 x 1.0 cfm = 30 cfm
 - Answer:
 - 30 cfm of Mechanical Ventilation is needed

Exception #4 Continued

- When Exception #4 Is Used
 - You must also comply with the code requirements of
 - Section N1102.7 Crawl Space Walls
 - “... Insulation shall be installed on crawl space walls when the crawl space is not vented to the outside air. The required R-value in Table N1102.1 shall be applied…”

Hydrogen Generation & Refueling Operations

- Natural Ventilation
 - Section M1307.4.1
 - For indoor operations
 - Minimum opening size of 3 inches
- Two Openings Required
 - Section M1307.4.2
 - One entirely within 12” of the ceiling
 - One entirely within 12” of the floor

Ventilation Openings

- Each Opening Must Go
 - Directly to the outdoors
 - Horizontally
 - ½ sq ft / 1000 cu ft of garage volume
- Louvers & Grills
 - M1307.4.1.2
 - Opening based on net free area
 - Less
 - 25% for metal louvers
 - 75% for wood louvers
Example #1

- **Garage Area**
 - 1. 20’w × 30’l × 8’h = 4800 cu ft
 - 2. 4800 cu ft / 1000 = 4.8
 - Since ½ square foot = 72 square inches
 - 4.8 × 72 = 345.6 sq in.
 - 345.6 / 144 = 2.4 sq ft
 - 3. 2.4 sq ft of minimum free area required

Mechanical Ventilation For Hydrogen Operations

- **Indoor Locations For Hydrogen Generating Or Refueling Operations**
 - To be mechanically ventilated as per Section 502.16 of the 2003 IMC
 - Ventilation rate of 1 cu ft / min (for each) 12 cu ft of room volume
 - Mechanical operation to be continuous
 - Unless interlocked with gas detection system

Engineered Installations

- **Section M1307.4.3**
 - Specially Engineered Installations
 - It sets up the supply of ventilation air
 - By use of an approved engineered system
 - It sets up a performance code
 - For new system development

Exhaust Systems

2009 IRC - Section M1501

- Section 1501.1 Outdoor discharge
 - Air removed by every mechanical exhaust system shall be discharged to the outdoors
 - Air shall not be exhausted into an attic, soffit, ridge vent or crawl space.
 - Exception: Whole house ventilation-type attic fans that discharge into the attic space of dwelling units having private attics shall be permitted.
Clothes Dryer Exhaust

2009 IRC Section M1502

Formerly Section M1501 - 2003 IRC

- **Section M1502.1 General**
 - Exhausted according to Manufacturer’s Instructions
- **Section M1502.2 Independent exhaust systems**
 - Exhaust is to be independent and terminate outdoors
- **Section M1502.3 Duct Termination**
 - Duct termination is to
 - Terminate not less than 3 feet in any directions from openings
 - Be equipped with a backdraft damper
 - No screens in duct termination

Dryer Exhaust Ducts

2009 IRC

Section M1502.4 Dryer Exhaust Ducts

- **M1502.4.1 Material and size**
 - Smooth interior finish
 - Minimum of 0.016” thick rigid metal
 - 4 inches nominal diameter
- **M1502.4.2 Duct installation**
 - Supported at 4 foot intervals and secured in place
 - Joints to run in the direction of air flow
 - No fasteners to extend into duct
- **M1502.4.3 Transition duct**
- **M1502.4.4 Duct length**
- **M1502.4.5 Length identification**

M1502.4.6 Exhaust ducts required

- Where space for clothes dryer is provided.
- Exception
 - Does not apply to condensing (ductless) dryers

M1502.4.3 Transition duct

- Limited to a single length
 - Not to exceed 8 feet
- To be listed and labeled UL 2158A
- Not to be concealed

Exhaust Duct

M1502.4.4 Duct length (2009 IRC)

- **M1501.4.4.1 Specified Length**
 - Not to exceed 25 feet in length
 - Reduced in accordance to Table M1502.4.4.1
- **M1501.4.4.2 Manufacturer’s instructions**
 - Size and Length as per MFG installation instruction

Length Limitation 2003 IRC

- **Section M1501.3**
 - Not to exceed 25 feet in length
 - Does not include the transition
 - Restriction reductions
 - 45 degree = 2.5 feet
 - 90 degree = 5 feet
Dryer Exhaust Ducts

- **M1502.4.5 Length identification**
 - Where concealed within building construction
 - Exhaust duct shall be identified on permanent label or tag
 - Label or tag shall be located within 6 feet of duct connection.

- **M 1502.5 Protection Required**
 - Protective shield plates shall be placed where nails or screws likely to penetrate
 - Less than 1.25 inches (between duct & finish surface)
 - Minimum thickness 0.062 inch steel
 - Extend 2 inches above sole plate and below top plate

Range Hoods

- **2009 IRC Section M1503**

- **General** Section M1503.1
 - All ducted range hoods are to discharge to the outdoors, through a single wall duct
 - No termination in Attic, Crawl Space, Inside of Building
 - Wall duct
 - Smooth interior finish
 - Air tight
 - Equipped with backdraft damper

Exception

- Range hood discharge
 - Listed & Labeled Ductless (Recirculating) Range Hoods
 - Are not required to exhaust outdoors
 - When
 - Installed as per MFG Installation Instructions
 - Mechanical or Natural ventilation is provided

Range Hood Duct Materials

- **Section M1503.2 Duct Material**
 - Single wall ducts for range hoods are to be constructed of
 - Galvanized steel, Stainless steel, Copper
 - Exception
 - Downdraft exhaust systems using
 - Schedule 40 PVC
Downdraft Exception

Exception to M1503.2

- **When Schedule 40 PVC Is Used**
 - Installation must meet all of the requirements
 - Duct to be installed under a concrete slab poured on grade
 - Trench to be backfilled with sand or gravel
 - Duct extension above indoor concrete floor
 - Maximum of 1 inch
 - Duct extension above outdoor grade
 - Maximum of 1 inch
 - Ducts are to be solvent cemented

Range Hoods

- **M 1503.3 Kitchen exhaust rates**
 - Fans shall be sized in accordance to M1507.3
- **M 1503.4 Makeup air required**
 - Exhaust hood systems exhausting in excess of 400 cubic feet per minute
 - Shall be provided with makeup at +/- equal rate
 - Makeup air systems equipped with means of closure and automatic controls to start and operate simultaneously with exhaust system

Microwave Oven Installation

- **Installation Of Microwave Oven Over A Cooking Appliance**
 - Section M1504.1
 - Unit is to be listed and labeled
 - Installation to be in conformance with
 - Listing and labeling
 - Manufacturers Installation Instructions

Overhead Exhaust Hoods

- **Section M1505.1**
 - Domestic open-top broiler units
 - To be provided with a metal exhaust hood
 - Minimum of 28 gage
 - 0.25 inch clearance to combustible materials
 - Minimum clearance from cooking surface of
 - 24 inches
Minimum Dimensions

• **Besides The 24” Minimum Clearance**
 -- To the cooktop surface
• **Unit is to be**
 -- As wide as the cook-top
 -- Extend over the cook-top
• **System Must Meet Requirements For**
 -- Outside termination
 -- Backdraft damper
 • For control of infiltration & exfiltration

Mechanical Ventilation
2009 IRC Section M1507

• **M 1507.2 Recirculation of Air:**
 • Exhaust Air from toilet rooms and bathrooms shall not be recirculated
 • Exhaust Air from toilet rooms and bathrooms shall not discharge into attic, crawl space or other airs inside building

• **M 1507.3 Ventilation Rate:** Table M1507.3

<table>
<thead>
<tr>
<th>AREA TO BE VENTILATED</th>
<th>VENTILATION RATES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kitchens</td>
<td>100 cfm intermittent or 25 cfm continuous</td>
</tr>
<tr>
<td>Bathrooms-Toilet Rooms</td>
<td>Mechanical exhaust capacity of 50 cfm intermittent or 20 cfm continuous</td>
</tr>
</tbody>
</table>

Short Break

Chapter 16
Duct Systems

• **Terms And Definitions**
 – **Duct System**
 • A continuous passageway for the transmission of air which, in addition to duct fittings, dampers, plenums, fans and accessory air-handling equipment and appliances.
 – **Plenum**
 • A chamber that forms apart of an air-circulation system other than the occupied space being exhausted.
Duct Construction

- **Duct Design Section M1601.1**
 - When serving heating, cooling & ventilation equipment
 - Fabrication to follow
 - This chapter's provisions &
 - ACCA Manual D
 - Or other approved methods

Type Of Duct Systems

- **The Chapter Breaks Them Down Into**
 - Above ground duct systems
 - Section M1601.1.1
 - Underground duct systems
 - Section M1601.1.2

Above Ground Duct Systems

- **Seven Code Requirements**
 - Discharge Air Temperature
 - Limited to 250 degrees F.
 - Factory Made Duct Material
 - To be Class 0 or Class 1 materials

<table>
<thead>
<tr>
<th>DUCT CLASS</th>
<th>MAXIMUM FLAME-SPREAD RATING</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>2.5</td>
</tr>
</tbody>
</table>

- **What Are These Ratings?**
 - Flame Spread
 - The propagation of flame over a surface
 - Flame Spread Index
 - The numerical value assigned to a material tested in accordance with ASTM E84

- **An Additional Area Of Reference**
 - NFPA 255
 - Standard method of test of surface burning characteristics of building materials
Above Ground Duct

- Fibrous duct is to conform to
 - SMACNA or NAIMA standards
- Minimum thickness of metal duct
 - As per Table M1601.1(2)

From: 2003 IRC

Above Ground Duct

- Gypsum products may only be used for construction of return ducts and plenums
 - Air temp not to exceed 125 degrees F
 - Exposed surface not to be subject to condensation
- Duct system construction materials flame spread index
 - Not to be greater than 200
- Stud wall cavities & floor joist spaces to be used as return air plenums
 - Must meet four criteria

Wall Cavities & Joist Spaces Criteria

- All Of The Following Must Be Met
 - May not be used for supply air
 - May not be part of a required fire resistance rated assembly
 - Wall cavity use not to convey air from more than one floor level
 - Space isolation from adjacent concealed spaces
 - Using tight fitting fire block
 - As per Section R602.8

Acceptable Installation

- Wall Studs
- Fireblocking
- Grill Open To Wall Cavity
- Gypsum Nailed Over Both Sides Of Studs
- Joint Space Plenum
- Bottom Plate Cutaway Opening Sealed In Flooring
Residential Code Requirements
Exhaust, Ventilation & Duct Systems

December 2011

Unacceptable

Underground Duct Systems
M1601.1.2

• Construction Materials
 • Concrete, Clay, Metal, Plastic

• Maximum Temperature
 • 150 degrees F. for plastic duct

• Metal duct to be protected from corrosion
 • In an approved manner
 • Or encased in 2" of concrete, minimum

• Installation of non-metallic duct
 • Follow MFG installation instructions

Manufactured Duct

• Factory-Made Ducts – Section M1601.2
 • Listed – labeled, approved for their intended use
 • Installation per MFG installation instructions

Flexible Air Duct Label Representation
Flexible Air Connector Label Representation
Residential Code Requirements
Exhaust, Ventilation & Duct Systems

December 2011

Flex Duct MFG Installation Instructions

SEE THE NEXT PAGE OF YOUR HANDOUT FOR COMPLETE SHEET

Factory Made Duct Insulation

• Duct Insulation Materials
 Section M 1603.3
 – Formerly M1601.2.1(2003 IRC)
 – All materials must conform to:
 • Flame spread index & smoke developed index
 – Flame spread not greater than 25
 – Smoke developed index not greater than 50
 – Exception 2009 IRC sprayed applied polyurethane foam to exteriors of ducts in attics & crawl spaces 25/450
 • Coverings and linings
 – Shall not
 » Glow, Flame, Smolder or Smoke
 » As per ASTM C 411 testing

Duct Insulation To Conform To

• Insulation Conformance Factors
 – External insulation & flex duct identification
 • Legible markings
 – Every 36 inches or less
 – To include
 » Manufacturer
 » R-value
 » Flame spread index
 » Smoke developed index

External Insulation & Flex Duct

• Installed Thickness R-Value
 – Duct board, liner & factory rigid duct
 • Use nominal insulation thickness
 – Duct wrap
 • Installed thickness
 – 76% of nominal thickness
 – Factory flexible ducts
 • Installed thickness
 – Difference between outside dia & inside diameter
 » Divided by 2
Vibration Isolators

- **Section M1601.2.1** (Formerly M1601.2.2 (2003 IRC))
 - When prefabricated from approved material
 - May not exceed 10” in length

Installation Of Ductwork

- **Joints & Seams – Section M1601.4.1** (Formerly M1601.3.1 in 2003 IRC)
 - Joints are to be substantially air tight
 - Joint & Seam sealing
 - Tapes, Mastics, Gasketing & other approved means
 - All methods to comply with their UL rating

Examples

- **Rigid Fibrous Glass Duct**
 - Meets UL 181A
 - UL 181 A-P = Pressure Sensitive Tape
 - UL 181 A-M = Mastic
 - UL 181 A-H = Heat Sensitive Tape

- **Flexible Air Ducts & Connectors**
 - Meets UL 181B
 - UL 181 B-FX = Pressure Sensitive Tape
 - UL 181 B-M = Mastic

Connections

- **Flange Connections**
 - Duct to flange connections are to be mechanically fastened

- **Crimp Joints For Round Ducts**
 - Should have a 1.5 inch contact lap
 - Must be mechanically connected
 - Minimum fastening of
 - 3 sheet metal screws or rivets, equally spaced
Duct Support

- **Support:** Section M 1601.4.3 (2003 IRC Section M1601.3.2)
 - **Metal Duct support**
 - 0.5 inch wide number 18 gage metal strap
 - (or) 12 gage galvanized wire
 - At intervals of
 - Not exceeding 10 feet
 - **Non-metallic ducts**
 - To be supported as per MFG installation instructions
- **Duct Separation:** Section M1601.4.7 (2003 IRC Section M1601.3.6)
 - Minimum of 4” from earth

Do I Need To Fireblock?

- **Fireblocking - Section M1601.4.4**
 - Formerly M1601.3.3 in 2003 IRC
 - Fireblock as per Section R602.8/R302.11
 - As per number 4
 - At openings around vents, pipes, ducts, cables and wires at ceiling and floor level, with an approved material to resist the free passage of flame and products of combustion

Insulation Installation

- **Duct Insulation**
 - Section M1601.4.5 (Formerly M1601.3.4 of 2003 IRC)
 - It shall be installed in accordance with three separate requirements
 - **Requirements**
 - **Vapor Retarder**
 - Maximum permeance of 0.05 perm
 - **Aluminum Foil**
 - Minimum thickness of 2 mils
 - **Both to be installed on the exterior of insulation**
 - On cooling supply ducts
 - Passing through unconditioned space
 - Exception spray polyurethane foam with water vapor 3 perm/ft² at installed thickness

- **When Wall Or Floor Is Fireblocked**
 - Duct coverings are not to penetrate the wall or floor

- **Exterior Duct System**
 - To be protected against the elements

Would This System Meet Code??
Insulation Thickness

- When Chapter 11 Of The 2009 IRC Is Used
 - For Energy Efficiency
 - Section N1103.2 Ducts -
 - Supply Ducts in Attics shall be insulated to a minimum of R-8
 - All other ducts shall be insulated to a minimum of R-6
 - Exception:
 - Ducts or portions thereof located completely inside the building envelope.

Ducts In Garages

- Supply Ducts in Garages
 - Ducts A - Ducts in Openings into Garage
 - Duct B - Any Duct Approved by the IRC

Under Floor Plenums

- Section M1601.5 (Formerly M1601.4 in 2003 IRC)
 - Underfloor space used as a supply plenum
 - Downflow / Counterflow furnace

Return Air

- Return Air May Be Taken From
 - Inside the dwelling
 - Outside dilution air may be added
 - Prohibited Sources – Section M1602.2
 - Outdoor and return air may not be taken from any of five locations
 - With some exceptions
Prohibited Sources
- **No Air To Be Taken From**
 - Within 10 foot minimum from
 - Appliance vent, Plumbing vent, Exhaust discharge
 - Unless outlet is 3 feet above the air inlet
 - **When Flammable Vapors Are Present**
 - May not be less than
 - 10 feet above a public way, or driveway
 - Nor less than 10 feet on grade location from
 - Sidewalk, street, alley or driveway

Prohibitions Continued
- **If Room Or Space**
 - Is less than 25% of the entire volume served
 - As per Manual D for room connections
 - Adjoining rooms or spaces may be considered as a single room
 - **Exception**
 - The 25% does not apply
 - If the return air is less than or = to the amount of supply air to the room or space

Prohibitions Continued
- **No Return Air May Be Taken From**
 - Closet
 - Bathroom
 - Kitchen
 - Garage
 - Mechanical Room
 - Furnace Room
 - Or another dwelling

Prohibited Sources
- **Any Room Or Space With Fuel Burning Units**
 - When the room serves as the sole source of return Air
- **Exception**
 - Direct vent or non-vented unit
 - Space volume exceeds
 - 1 cubic foot for each 10 Btu/h of total input
 - Discharge air is = to supply air
 - Return air inlet not within 10 feet of firebox or draft hood
 - Solid fuel burning with return air inlet
 - Greater than 10 feet from firebox or draft hood
Combustion Air

Major Change in 2009 IRC from 2003 IRC
- Section M1701.1 Scope.
 - Solid-fuel burning appliances
 - Shall be provided with combustion air in accordance with the manufacturer's installation instructions.
 - Oil-Fired appliances
 - Shall be provided with combustion air in accordance with NFPA 31 - 2006
 - Methods of providing combustion air in this chapter do not apply to fireplaces, fireplace stoves, and direct-vent appliances
 - Gas-fired appliances shall be in accordance with Chapter 24 – Fuel Gas

Combustion Air - 2003 IRC
- Air Supply Section M1701.1
 - The section deals with liquid and solid fuel systems
 - It does not deal with gas units
 - Buildings Of Unusually Tight Construction
 - Combustion air is to be gotten from outside the sealed envelope
 - Ordinary Tightness Is Based Upon
 - 50 cu ft of air per 1000 Btu/h of total input

What Is
- Unusually Tight Construction
 - Construction meeting these requirements
 - Thermal envelope walls
 - With a vapor retarder rating of 1 perm or less with gasketed or sealed openings
 - Doors & openable windows meeting air leakage
 - Requirements of IECC 502.14.1
 - Applied caulking and sealants for joints, windows, door frames, plates
 - Mechanical, electrical & plumbing penetrations and other openings

Combustion Air (2003 IRC)
- Prohibited Sources Section M1701.4
 - Areas where a fan may cause adverse conditions
 - Areas with flammable vapors
 - Fuel fired systems may not get air from
 - Sleeping rooms
 - Bathrooms
 - Toilet Rooms
 - Exceptions
 - If solid fuel, provided it is not a conditioned space
 - If all air is from outdoors and enclosure uses
 - Solid weather stripped door with self closure
All Air From Inside The Building (2003 IRC)

Required Volume
- This method may be used if the following are met
 - Volumetric space is greater than 50 cu ft per 1000 Btu/h of total input
 - Building is of Ordinary Tightness
- Communicating rooms may be used
 - If they communicate directly through openings
 - With no doors

Confined Space (2003 IRC)

- **Section M1702.2**
 - Opening dimensions for each opening
 - 1 sq in / 1000 Btu/h of total input
 - Minimum of 100 sq in per opening

Outdoor Air (2003 IRC)

- **All Air From Outdoors M1703**
 - Two openings or ducts - Section M1703.2
 - Location
 - Within 12" of the top
 - Within 12" of the bottom
 - May be direct connections to
 - Outdoors, Ventilated Attic, Ventilated Crawl Space
 - Opening size
 - Vertical Ducts = 1 sq in per 4000 Btu/h total input
 - Horizontal Ducts = 1 sq in per 2000 Btu/h total input
 - Minimum cross sectional dimension of rectangular duct to = 3 inches

Diagram Example #1

DIRECT OPENINGS (100% Outside Air)

2 Permanent Openings Each Sized (1Sq. In. / 4,000 Btu/hr Input)
- Top Or Outlet Opening
 - Located Within 12 Inches Of Ceiling
- Bottom Or Inlet Opening
 - Located Within 12 Inches Of Floor
Residential Code Requirements
Exhaust, Ventilation & Duct Systems

Diagram Example # 2
Vertical Ducts

Diagram Example # 3
Through Horizontal Ducts

Outdoor Air From Indirect Areas (2003 IRC)

- Attic Combustion Air - Section M1703.3
 - Ventilation to be sufficient for
 - Attic needs & combustion air needs
 - Metal sleeve to extend
 - 6 inches above joists & insulation
 - Inlet within outlet may be used
 - Inlet duct to be 12” above outlet duct

- Underfloor Combustion Air – Section M1703.4
 - Ventilation openings to outside
 - To be a minimum of
 - 2 times the required combustion air opening

Diagram Example # 1
Combustion Air From Attic Space
2009 IRC - NFPA 31- 2006 Chapter 5
Air for Combustion and Ventilation

• Section 5.2 Basic Requirements
 – Appliances located not to interfere with supply of air within space
 – Outside air shall be introduced where tight buildings' normal infiltration does not provide sufficient combustion air
 – Ducts from outdoors same cross-sectional area as free area of openings to which they connect
 – Smallest dimension of rectangular air ducts not less than 3 in.
 – Residential requirements of 5.2.1 permitted to be met by either Section 5.3 or 5.4

2009 IRC - NFPA 31- 2006 Chapter 5
Air for Combustion and Ventilation

• Section 5.3 Appliances Located in Unconfined Spaces
 – Section 5.3.1: In unconfined spaces in buildings of conventional frame, brick or stone construction
 • Air for combustion and ventilation shall be permitted to be supplied by normal infiltration
 – Section 5.3.2: If Normal Infiltration is not sufficient because of TIGHT Construction
 • Air for combustion and ventilation shall be obtained directly from outdoors
 • Or from spaces that freely communicate with outdoors by means of permanent opening or openings having a total free area not less than 1 in² per 5000 Btu/hr based on input rating of all appliances in space
2009 IRC - NFPA 31- 2006 Chapter 5
Air for Combustion and Ventilation

• Section 5.4 Appliances Located in Confined Spaces
 – Section 5.4.1: All Air Taken from Inside the Building
 • The confined space shall be provided with 2 openings see figure 5.4.1.1, one near top of space and one near bottom
 – Section 5.4.2: All Air Taken from Outdoors
 • The confined space shall be provided with 2 openings, one near top of space and one in or near bottom
 • The openings shall communicate directly or by means of ducts with the outdoors or to spaces such as attics or crawl space that freely communicate with outdoors
 – Section 5.4.3: Air Taken from Inside the Building – Combustion Air Taken from Outdoors
 • The confined space shall be provided with 2 openings ...

NFPA 31- 2006
Section 5.4.1
All Air Taken from Inside the Building

NFPA 31- 2006
Section 5.4.2
All Air Taken from Outdoors
Combustion Air For Gas

- **Chapter 24 Fuel Gas**
 - Uses the same methods as chapter 17 (2003 IRC)
 - With a few additions

- **Combining Spaces In Different Stories**
 - Section G2407.5.3.2
 - Allows for the use of a second story for combustion air under ordinary tightness
 - 1 or more openings in
 - Doors and floors
 - Total free area of 2 sq in per 1000 Btu/h total input

One Opening For Outside Air

- **One Permanent Opening Method - Section G2407.6.2**
 - Allows for one opening
 - Within 12" of the top of the enclosure
 - Opening size of
 - 1 sq inch per 3000 Btu/h of total input
 - Equipment within enclosure minimum clearances of
 - 1" sides and back
 - 8" in front
Residential Code Requirements

Exhaust, Ventilation & Duct Systems

December 2011

One Opening Placement

- **A** = Direct Opening To Outside Within 12 Inches Of Ceiling
- **B** = Horizontal Duct To Outside Within 12 Inches Of Ceiling
- **C** = Vertical Duct To Attic Space Within 12 Inches Of Ceiling

Terminates Minimum Of 6 Inches Above Attic Floor And Insulation

Enclosure Clearances

- **SINGLE OPENING TO OUTDOOR AIR**
- **FRONT**
- **6 INCH MINIMUM**

Use Of Indoor & Outdoor Air

- **Outdoor Opening Calculation** – Section G2407.7.3
 - **Calculation of opening size**
 - Interior ratio shall be
 - Available volume / Required volume
 - Outdoor size reduction factor
 - 1 minus ratio of interior space
 - Minimum outdoor opening size
 - Size as determined by section G2407.6
 - Times the reduction factor
 - **NOTE:** Minimum dimension not to be less than 3 inches

Example Problem

![Example Problem Diagram]

20' x 20'

20,000 Btu/hr Furnace

50,000 Btu/hr Water Heater

2 Openings 10" x 20"

2 - 3" Dia. Openings

NOTE: Ceiling 8'

Office of Education and Data Management
Do The Openings To The Outdoors, Combined With The Volumes Of A & B Meet Combustion Air Demand?

- **Volume Of “A”:**
 - 4800 Cubic Feet
- **Volume Of “B”:**
 - 4800 Cubic Feet
- **Area Of The 3” Diameter Opening:**
 - 7.07 Square Inches
- **Area Of Each Opening Between A & B:**
 - 200 Square Inches

Problem Continued

- **TOTAL INPUT:**
 - 200,000 Btu/hr
- **Question**
 - Do “A” & “B” meet the volumetric requirements of G2407.5?
 - **Required Volume =**
 - 10,000 Cu.Ft.
 - **Available Volume =**
 - 9,600 Cu. Ft.
 - **NO**

Problem Continued

- **Do openings between “A” & “B” meet requirements of G2407.5.3**
 - **Required Area =**
 - 200 Square Inches
 - **Actual Area =**
 - 200 Square Inches
 - **YES**

Problem Continued

- **Determine The Required Area Of Each Outdoor Opening?**
 - **Required Area =**
 - $(200,000 / 4000) \times 1 \text{sq in} = 50 \text{ sq in}$
 - **Determine If The 3 Inch Diameter Openings Along With The Interior Openings Comply?**
 - $[(1) - 9600 / 10000] \times 50 = 0.04 \times 50 = 2 \text{ sq in.}$
 - **OK**
How Does All This Fit In With

Tying The Ends Together

- Single Code Requirements
 - Will not stop Indoor Air Quality problems
- All Code Requirements Together
 - Ventilation, Exhaust, Proper Duct Design
 - Will keep the Residential Building free of
 - Contaminants
 - Moisture
 - Mold
 - Hazardous Products
- Promoting a healthy and safe environment

What Does The Future Hold

- ASHRAE Standards Are In The Lead
 - ASHRAE Standard 62.2 – 2003
 - Ventilation & Acceptable Indoor Air Quality for Low-Rise Residential Buildings
 - Leads the way in Residential IAQ through
 • Ventilation, Exhaust & Ducting
 - Maine is in the process of adopting this standard for their new Building Code
 - Newer codes will be using this standard
 • In its complete or a partial form

Questions??

CT Department of Public Safety
Division of Fire, Emergency and Building Services

- Office of the State Building Inspector
 (860) 685 - 8310
- Office of the State Fire Marshal
 (860) 685 - 8350
- Office of Education and Data Management
 (860) 685 – 8330

http://www.ct.gov/dps/

Thank-you!