Applications of CAPTCHAs

CAPTCHAs have several applications for practical security, including (but not limited to): 

· Preventing Comment Spam in Blogs. Most bloggers are familiar with programs that submit bogus comments, usually for the purpose of raising search engine ranks of some website (e.g., "buy penny stocks here"). This is called comment spam. By using a CAPTCHA, only humans can enter comments on a blog. There is no need to make users sign up before they enter a comment, and no legitimate comments are ever lost!

· Protecting Website Registration. Several companies (Yahoo!, Microsoft, etc.) offer free email services. Up until a few years ago, most of these services suffered from a specific type of attack: "bots" that would sign up for thousands of email accounts every minute. The solution to this problem was to use CAPTCHAs to ensure that only humans obtain free accounts. In general, free services should be protected with a CAPTCHA in order to prevent abuse by automated programs.

· Online Polls. In November 1999, http://www.slashdot.org released an online poll asking which was the best graduate school in computer science (a dangerous question to ask over the web!). As is the case with most online polls, IP addresses of voters were recorded in order to prevent single users from voting more than once. However, students at Carnegie Mellon found a way to stuff the ballots using programs that voted for CMU thousands of times. CMU's score started growing rapidly. The next day, students at MIT wrote their own program and the poll became a contest between voting "bots." MIT finished with 21,156 votes, Carnegie Mellon with 21,032 and every other school with less than 1,000. Can the result of any online poll be trusted? Not unless the poll ensures that only humans can vote.

· Preventing Dictionary Attacks. CAPTCHAs can also be used to prevent dictionary attacks in password systems. The idea is simple: prevent a computer from being able to iterate through the entire space of passwords by requiring it to solve a CAPTCHA after a certain number of unsuccessful logins. 

· Search Engine Bots. It is sometimes desirable to keep webpages unindexed to prevent others from finding them easily. There is an html tag to prevent search engine bots from reading web pages. The tag, however, doesn't guarantee that bots won't read a web page; it only serves to say "no bots, please." Search engine bots, since they usually belong to large companies, respect web pages that don't want to allow them in. However, in order to truly guarantee that bots won't enter a web site, CAPTCHAs are needed.

· Worms and Spam. CAPTCHAs also offer a plausible solution against email worms and spam: "I will only accept an email if I know there is a human behind the other computer." A few companies are already marketing this idea.

Guidelines

If your website needs protection from abuse, it is recommended that you use a CAPTCHA. There are many CAPTCHA implementations, some better than others. The following guidelines are strongly recommended for any CAPTCHA:

· Accessibility. CAPTCHAs must be accessible. CAPTCHAs based solely on reading text — or other visual-perception tasks — prevent visually impaired users from accessing the protected resource. Such CAPTCHAs may make a site incompatible with Section 508 in the United States. Any implementation of a CAPTCHA should allow blind users to get around the barrier, for example, by permitting users to opt for an audio CAPTCHA.

· Image Security. Images of text should be distorted randomly before being presented to the user. Many implementations of CAPTCHAs use undistorted text, or text with only minor distortions. These implementations are vulnerable to simple automated attacks. For example, the CAPTCHAs shown below can all be broken using image processing techniques, mainly because they use a consistent font.


· Script Security. Building a secure CAPTCHA is not easy. In addition to making the images unreadable by computers, the system should ensure that there are no easy ways around it at the script level. Common examples of insecurities in this respect include: (1) Systems that pass the answer to the CAPTCHA in plain text as part of the web form. (2) Systems where a solution to the same CAPTCHA can be used multiple times (this makes the CAPTCHA vulnerable to so-called "replay attacks").

· Security Even After Wide-Spread Adoption. There are various "CAPTCHAs" that would be insecure if a significant number of sites start using them. An example of such a puzzle is asking text-based questions, such as a mathematical question ("what is 1+1"). Since a parser could easily be written that would allow bots to bypass this test, such "CAPTCHAs" rely on the fact that few sites use them, and thus that a bot author has no incentive to program their bot to solve that challenge. True CAPTCHAs should be secure even after a significant number of websites adopt them. 

